
SANDIA REPORT
SAND2009-6265
Unlimited Release
Printed October 2009

HOPSPACK 2.0 User Manual (v 2.0.2)

Todd D. Plantenga

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.aspx

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

http://www.osti.gov/bridge
http://www.ntis.gov/help/ordermethods.aspx

SAND2009-6265
Unlimited Release

Printed October 2009

HOPSPACK 2.0 User Manual (v 2.0.2)

Todd D. Plantenga
Informatics and Decision Science Department

Sandia National Laboratories
Livermore, CA 94551-9159

Email: tplante@sandia.gov

Abstract

HOPSPACK (Hybrid Optimization Parallel Search PACKage) solves derivative-free opti-
mization problems using an open source, C++ software framework. The framework enables
parallel operation using MPI or multithreading, and allows multiple solvers to run simultane-
ously and interact to find solution points. HOPSPACK comes with an asynchronous pattern
search solver that handles general optimization problems with linear and nonlinear constraints,
and continuous and integer-valued variables. This user manual explains how to install and use
HOPSPACK to solve problems, and how to create custom solvers within the framework.

This SAND report was first issued in October 2009 as the User Manual for HOPSPACK 2.0.
Minor revisions to the manual were made for subsequent minor releases of the software.

User Manual revision history
2.0 Oct 2009 First HOPSPACK User Manual.
2.0.1 Mar 2010 Added instructions for building on Mac OSX (Section 6.4), and clarified

the return status when evaluating by System Call (Section 5.1).
2.0.2 Apr 2011 Added an example of linking Fortran LAPACK libraries (Section 6.3),

and added information about scaling of variables (Section 4).

3

Acknowledgments

This work was funded by the U.S. Department of Energy, through the Office of Advanced Scientific
Computing Research (ASCR), as part of the Applied Mathematics Research Program (http://
www.er.doe.gov/ascr/Research/AppliedMath.html).

The developers thank Joshua Griffin for his preliminary work on “HOPSPACK 1.0”, which
tested many ideas and formed the basis of the current software.

Thanks to Professor Komei Fukuda for allowing the use of CDDLIB source code in the GSS
solver.

4

http://www.er.doe.gov/ascr/Research/AppliedMath.html
http://www.er.doe.gov/ascr/Research/AppliedMath.html

Contents

1 Introduction . 7
1.1 Project History . 8
1.2 Citing HOPSPACK . 9

2 Quick Start . 10
3 Theory of Operation . 12

3.1 Software Architecture . 12
3.2 Stopping Tests . 15
3.3 GSS Overview . 15

4 Config Parameters . 18
4.1 Defining the Optimization Problem . 20
4.2 Quick Reference for Config Parameters . 21
4.3 Problem Definition Sublist Parameters . 24
4.4 Linear Constraints Sublist Parameters . 28
4.5 Evaluator Sublist Parameters . 30
4.6 Mediator Sublist Parameters . 32
4.7 Citizen GSS Sublist Parameters . 36
4.8 Citizen GSS-NLC Sublist Parameters . 40

5 Calling an Application . 45
5.1 Evaluation by System Call . 45
5.2 Linking Evaluation Code . 47
5.3 Evaluation Tips . 48

6 Building HOPSPACK. 49
6.1 Download HOPSPACK Source Code . 49
6.2 Download and Install CMake . 49
6.3 Build an LAPACK Library . 50
6.4 Build and Test the “serial” HOPSPACK Executable . 52
6.5 Build and Test an “mt” HOPSPACK Executable . 57
6.6 Build and Test an “mpi” HOPSPACK Executable . 58

7 Extending HOPSPACK . 60
7.1 Writing a New Citizen . 60

8 More About CMake. 62
8.1 Debugging the Build Process . 62
8.2 Building a Debug Version of the Code . 62
8.3 Specifying a Different Compiler . 62
8.4 Adding Libraries to an Executable . 63

References . 64

Figures

1 HOPSPACK architecture diagram. 12
2 HOPSPACK communication using MPI. 14
3 HOPSPACK communication using multithreading. 14
4 Hierarchy of GSS algorithms, showing how complicated problems are decomposed

into simpler subproblems. Arrows “A” and “B” are referenced in the text. 17
5 HOPSPACK communication with an application. 45

5

This page intentionally left blank.

1 Introduction

HOPSPACK (Hybrid Optimization Parallel Search PACKage) is derivative-free optimization soft-
ware for solving general optimization problems, especially those with noisy and expensive functions.
HOPSPACK provides an open source C++ framework that enables parallel operation using MPI
(for distributed processing architectures) or multithreading (for multi-core machines). The software
is easily interfaced with application code, builds on most operating systems (Linux, Windows, Mac
OSX), and is designed for extension and customization.

The basic optimization problem addressed is

minimize f(x)
subject to AI x ≥ bI

AE x = bE
cI(x) ≥ 0
cE(x) = 0
l ≤ x ≤ u

(1)

Here f(x) : Rn → R ∪ {+∞} is the objective function of n unknowns. The first two constraints
specify linear inequalities and equalities with coefficient matrices AI and AE . The next two con-
straints describe nonlinear inequalities and equalities captured in functions cI(x) and cE(x). The
final constraints denote lower and upper bounds on the variables. HOPSPACK allow variables to
be continuous or integer-valued and has provisions for multi-objective optimization problems. In
general, functions f(x), cI(x), and cE(x) can be noisy and nonsmooth, although most algorithms
perform best on determinate functions with continuous derivatives.

HOPSPACK is released with two user communities in mind: those who need an optimization
problem solved, and those who wish to experiment with writing their own derivative-free solvers.

Key features for users who need to solve an optimization problem are:

• Only function values are required for the optimization (no derivatives), so it can be
applied to a wide variety of problems. Functions can be nonsmooth or noisy, and take any
amount of time to execute (for example, complex simulations may take minutes or hours to
run).

• The user simply provides a program that can evaluate the objective and nonlinear
constraint functions at a given point. The program can be written in any language: Fortran,
C/C++, Perl, MATLAB, etc. The procedure for evaluating the objective and constraint
functions does not require an encapsulating subroutine wrapper or linking with HOPSPACK
libraries; usually the procedure is an entirely separate program.

• HOPSPACK can be run in parallel on a cluster of computers or on multi-core ma-
chines, greatly reducing the total solution time. Parallelism is achieved by assigning function
evaluations of individual points to different processors, which automatically gives good load
balancing. Asynchronous operation can use either MPI for distributed machine parallelism,
or multithreading for parallel operation on multi-core machines.

• An asynchronous implementation of the Generating Set Search (GSS) algorithm
is supplied. GSS is a type of pattern search solver that was available in the predecessor to

7

HOPSPACK. The core GSS solver handles linear constraints, and is extended in HOPSPACK
2.0 to allow nonlinear constraints, integer-valued variables, and multiple start points.

• Multiple algorithms can run simultaneously and are easily configured to share infor-
mation, leading to a faster “best” solution.

• Binary executables are available for single machine systems. Executables are multi-
threaded to utilize multiple processors or cores on the machine.

• Source code builds with native C++ compilers on Linux, Mac OSX, and Win-
dows. The source is easily configured to compile with MPI implementations and third-party
libraries.

Key features for users developing their own derivative-free solvers are:

• Parallel evaluation of trial points is managed by the HOPSPACK framework, exploiting
both distributed machine parallelism and multithreading.

• A simple C++ interface cleanly abstracts framework utilities and the application’s
problem definition. An algorithm iterates by receiving a list of newly evaluated points,
and then submitting a list of unevaluated trial points. All other work is handled by the
HOPSPACK framework.

• Algorithms share a cache of computed function and constraint evaluations to
eliminate duplicate work.

• Algorithms can initiate and control subproblems, a useful technique for handling
multiple start points, nonlinear constraints, and integer-valued variables.

• Source code ports easily to compilers on most operating systems, including GNU
gcc, Intel C++, and Microsoft Visual Studio C++.

• The software is freely available under the terms of the GNU Lesser General Public License.

1.1 Project History

HOPSPACK is a successor to Sandia National Laboratory’s APPSPACK (Asynchronous Parallel
Pattern Search PACKage) product. The final version of APPSPACK, 5.0, was released in 2007
[1, 4]. The HOPSPACK software builds on APPSPACK 5.0, extending its capabilities in several
ways:

• Nonlinear constraints and integer-valued variables are accepted by the framework and
handled by extensions to the GSS solver.

• Multithreading capability is provided on a machine with multiple processors or cores. This
allows parallel processing without installing MPI and compiling source code.

• Multiple solvers can run simultaneously and share information.

8

• Solvers can initiate and control subproblem solvers.

• Windows and Mac OSX native compilers are supported.

Both APPSPACK and HOPSPACK projects were led by Tamara G. Kolda of Sandia National
Laboratories (SNL). Major contributors to APPSPACK were Genetha Gray (SNL), Joshua Griffin
(SAS Institute), Patty Hough (SNL), Michael Lewis (William & Mary), and Virginia Torczon
(William & Mary).

Both projects make use of source code from CDDLIB 0.94 in the GSS solver, generously made
available by permission of Professor Komei Fukuda (http://www.ifor.math.ethz.ch/staff/fukuda).

An early version of HOPSPACK was developed and coded by Tamara Kolda and Joshua Griffin,
who was then with Sandia National Laboratories. Work on HOPSPACK 2.0 was completed in 2009
by Todd Plantenga.

1.2 Citing HOPSPACK

If you find HOPSPACK useful, please cite this technical report in any resulting publications or
reports. The BibTex reference is as follows:

@TECHREPORT{Hops20-Sandia,
author = {Todd D. Plantenga},
title = {HOPSPACK 2.0 User Manual},
institution = {Sandia National Laboratories, Albuquerque, NM and Livermore, CA},
month = {October},
year = {2009},
number = {SAND2009-6265}

}

We greatly appreciate hearing about applications and success stories using HOPSPACK. Such
information helps determine the next improvements to be made in the software, and helps us to
continue funding this work. Please email the author at tplante@sandia.gov, or visit the Wiki
page at https://software.sandia.gov/trac/hopspack.

9

http://www.ifor.math.ethz.ch/staff/fukuda
https://software.sandia.gov/trac/hopspack

2 Quick Start

The fastest way to start using HOPSPACK is to download a precompiled executable package
and interface your optimization problem based on the examples provided with the package. The
precompiled code is limited to a single machine, but can parallel process using threads on a machine
with multiple processors or cores. Precompiled executables do not require additional third party
software installs. Packages are available for:

Linux. 32-bit x86 processors, compiled with g++ 3.4.6 on Red Hat Enterprise Linux WS 4.

Mac OSX. 32-bit x86 processors, compiled with g++ 4.0.1 (XCode 3.1.2) on Mac OSX
10.5.8.

Windows. 32-bit x86 processors, compiled with Microsoft Visual C++ 9.0 on Windows XP
(SP2). Should run on 32-bit Windows Vista, Windows Server 2003, and Windows Server
2008. Should also run in 32-bit emulation mode (WOW64) on Windows XP Professional x64.

Follow these steps to quickly solve your optimization problem:

• Download a package for your machine. Follow the links at
https://software.sandia.gov/trac/hopspack

Get a binary package, save it in any directory, and unzip the file. No administrative privileges
are needed.

• Run an example. Open a command line terminal window. Find the directory where you
unzipped HOPSPACK and change to examples/1-var-bnds/only (on Windows use backslashes
’\’ instead of ’/’). Now type

> ../../HOPSPACK main serial example1 params.txt

Compare the answer with results in the file examples/README.txt.

• Learn how to configure a parameter file. For instance, to get a more accurate solution
to the first example, edit the text file example1 params.txt and change the Step Tolerance
in the “Citizen 1” sublist from 0.01 to 0.002. Then run the example again. Read Section 4 to
learn about configuration parameters, especially the example parameter file at the beginning
of the section.

• Interface your problem with HOPSPACK. Create your own parameter file, based on
one of the examples. The number of variables, bounds, and linear constraints are specified
in this file (details are in Section 4.3 and Section 4.4). Write a simple script or program
that computes the objective function and any nonlinear constraint values (for instance, see
examples/2-linear-constraints/linear constraints.cpp). The program should take an input file
name, evaluate the functions, and write the answer to a file. Edit the parameter file and put
the name of your program as the Executable Name in sublist “Evaluator”. Read Section 4.1
to learn more about formulating your optimization problem, and Section 5 to learn more
about the evaluation step.

• Run your problem. Invoke HOPSPACK with your parameter file name:

10

https://software.sandia.gov/trac/hopspack

> ../../HOPSPACK main serial your params.txt

If your machine has multiple processors or cores, then you can try parallel evaluations:
> ../../HOPSPACK main threaded your params.txt

Edit the parameter file and increase the Number Threads parameter to engage more CPU
resources.

What to do next:

Build HOPSPACK. The precompiled code is limited to multithreaded parallelization on
one machine, and executes linear algebra routines with the standard Netlib LAPACK library.
You can download source code and build with your own compiler, compile with MPI for dis-
tributed machine operation, link with a different LAPACK library, and more. Read Section 6
to learn how.

Extend HOPSPACK. You can download source code and make modifications to suit spe-
cial needs. For example, you can embed HOPSPACK in other software, call the application
that computes function values directly, or change the way parallel resources are allocated.
Read Section 7 to learn more.

Write your own solver. This is what the HOPSPACK framework is intended for. You
can download source code and add your own algorithm in a new solver. You might write
a global search solver that controls the GSS local solver in HOPSPACK, or write your own
local search solver, or hybridize different algorithms. Start with Section 3.1 to learn about
the framework, read the description of the GSS solver in Section 3.3, and refer to Section 7
to learn about extending the software.

11

3 Theory of Operation

The primary goal of HOPSPACK is to provide a parallel processing framework for executing algo-
rithms that solve optimization problems with no derivatives (please note that the terms “solver”
and “algorithm” are used interchangeably in this document). This section describes the architec-
ture of the software framework and the suite of GSS solvers included with HOPSPACK. You should
study this section carefully before writing your own algorithm as a HOPSPACK solver.

3.1 Software Architecture

In HOPSPACK each solver is called a Citizen. Citizens are independent, but share the resources
of the HOPSPACK framework. Different types of algorithms are coded as different subclasses of a
Citizen base class, which provides uniform access to the framework.

Figure 1 shows the major components of the HOPSPACK framework. The large box in the
center contains the single “main thread” (it could be a thread or a process) that runs Citizens,
the Mediator, and the Conveyor (these components are described below). Workers of two different
types execute in parallel with the main thread. On the right are workers for evaluating functions
at a particular trial point, and on the left are workers associated with specific citizens.

Figure 1. HOPSPACK architecture diagram.

The Mediator runs a main processing loop until deciding that HOPSPACK should stop. Each
Mediator iteration assembles trial point requests from all Citizens and passes them to the Conveyor.
The Conveyor checks if new points can be fulfilled from a cache, and sends the rest to idle workers
for evaluation. Two caches are checked: a primary Cache of completed evaluations, and a Pending
Cache that lists trial points currently assigned to evaluation workers. The Conveyor collects results
from workers that have completed and passes these back to the Mediator. Citizens are then given
the full set of newly evaluated points. They examine values and submit new trial points, which
starts the next iteration. Citizens can also spawn dynamic “child citizens” to solve subproblems.

12

From a citizen’s point of view trial points are evaluated asynchronously, so requests are typically
managed with an internal queue, as shown in Figure 1. The citizen submits trial points and may
receive evaluated results at any future iteration. Evaluated points follow the order given from the
citizen’s queue of trial points. The citizen has the opportunity to retract previously submitted
points if they are still waiting on the Conveyor (for example, the GSS citizen will retract old
unevaluated requests when a new “best point” is found). The Mediator collects trial requests from
each citizen into a single queue, interleaving points based on citizen priorities.

Figure 1 shows three citizen instances running simultaneously. The top two are connected
because the GSS-NLC instance dynamically created the GSS instance to solve a subproblem. The
citizen labeled DIRECT has a parallel processing worker because its algorithm requires significant
CPU time to process points. The “citizen worker” allows the Mediator loop to run more quickly,
and thus avoids slowing down other citizens.

As coordinator of the “town” of citizens, the Mediator decides when to stop HOPSPACK and
what final solution to return. Each citizen decides when it has converged to a solution point,
as defined by its own criteria. If all citizens have converged not necessarily to the same point),
then the Mediator stops. It reports the best feasible point that it has seen, regardless of which
citizen generated the point. If a problem-specific stop rule is supplied (for example, an Objective
Target value, see p 25), then the Mediator will stop as soon as it sees a point satisfying the criteria
(see Section 3.2). The Mediator will also stop execution if a defined resource limit is reached (for
instance, execution time or the total number of worker evaluations).

The Cache in Figure 1 is an important feature of HOPSPACK that often improves performance
of GSS and related algorithms. The Cache remembers all points and values that have been eval-
uated. If a new trial point is sufficiently close to a cached value, then it reports the stored value
instead of making another evaluation. The definition of “closeness” is controlled by the Cache
Comparison Tolerance parameter (p 33). The Cache can also write its contents to a file (Cache
Output File, p 34), and load from a file (Cache Input File, p 33) when HOPSPACK initializes.
This feature allows HOPSPACK to be interrupted without losing work. As an interesting exercise,
try solving a problem and saving the cache to a file, and then solving again after initializing from
the cache file. If the Mediator is instructed to use Synchronous Evaluations (p 34), then the
problem will solve completely from cached information. If not synchronous then there may be a
few new iterations that choose different directions, but the citizen should quickly build up a cache
that can solve without any evaluations.

Workers run copies of the application to collect objective and nonlinear constraint values at trial
points. Each worker runs a HOPSPACK Evaluator instance, which typically calls the application
as a separate process for each trial point. See Section 5 for details on how an application is called.
The workers on the right side of Figure 1 run in parallel under direction of the Conveyor. The
Conveyor uses an Executor subclass, specialized either for MPI or multithreaded (MT) operation,
to coordinate workers. Figure 2 shows an example of the worker partitioning for HOPSPACK using
MPI on three nodes, and Figure 3 shows an example of worker partitioning for HOPSPACK using
multithreading on a quad-core machine.

MPI and MT are complementary methods of obtaining parallel performance. MPI-based
HOPSPACK can solve problems on computing clusters with tens of thousands of nodes, while MT
exploits the multi-core capacity of a single machine. MT binaries are available for most platforms,
but MPI requires recompiling HOPSPACK source code with an MPI-aware compiler.

13

Figure 2. HOPSPACK communication using MPI.

In this example three copies of the application run in parallel on three different computers. Four
MPI nodes are employed. Evaluator nodes (rank 1, 2, 3) make system calls to the application, and
the main node (rank 0) runs the HOPSPACK Executor to control evaluations. The Mediator and
Citizen solvers also run on the main node. Execution may be faster if the main node can be placed
on a separate computer.

Figure 3. HOPSPACK communication using multithreading.

In this example three copies of the application run in parallel as different processes on the same
machine. Four threads run in the HOPSPACK process. Evaluator threads make system calls to
the application, and a fourth thread runs the Executor to control evaluations. The Mediator and
Citizen solvers also run on the main thread. Execution may be faster if additional cores are available
for the application instances.

14

3.2 Stopping Tests

The Mediator decides when to stop HOPSPACK and what to return as the best point found. The
Mediator examines all evaluated points, regardless of which solver submitted it, and keeps the best
according to criteria discussed below. HOPSPACK stops if any of the following conditions are met:

• All Citizen solvers are finished.

• The total number of evaluations exceeds parameter Maximum Evaluations (p 33). The de-
fault value of this parameter imposes no limit on evaluations.

• The best point is feasible and satisfies an objective target set by the user. Parameters
Objective Target (p 25) and Objective Percent Error (p 26) are used to set target val-
ues. This is only useful if a practical value for the objective function is known.

A trial point is feasible if it satisfies the bound constraints, linear constraints, and nonlinear
constraints defined for the optimization problem. Different tolerances are applied for each type of
constraint:

Bound constraints. Variables are feasible if they satisfy the bound constraint exactly.

Linear constraints. Linear equalities and inequalities are satisfied if within a tolerance set
by parameter Active Tolerance in the “Linear Constraints” sublist (p 29). Computations
are made in scaled coordinates (see Scaling (p 24)) and normalized using the L2 norm of
the variables and the constraint.

Nonlinear constraints. Nonlinear equalities and inequalities are satifisfied within a toler-
ance set by parameter Nonlinear Active Tolerance in the “Problem Definitions” sublist
(p 27). Computations are not scaled.

The Mediator is responsible for choosing the best point that is output when HOPSPACK
finishes. This is usually the same “best point” found by GSS and other solvers, but not always.
The Mediator first seeks a point that passes the feasibility tests described above. If a feasible point
has not been found, then the least infeasible is “best”, as measured by the unscaled L∞ norm of the
constraint vector. If a feasible point has been found, then a “better” point must pass the feasibility
test and improve on the objective value. Source code is located in HOPSPACK Mediator.cpp in the
method Mediator::updateBestPoint ().

3.3 GSS Overview

Generating Set Search (GSS) in HOPSPACK is an asynchronous implementation of pattern search
ideas. An excellent review of pattern search methods and convergence theory is in [5]. GSS with
linear constraints is explained in [3] and [6], and GSS with nonlinear constraints in [2]. This
overview will provide only a brief outline of the GSS algorithm.

The most basic GSS method addresses problems with continuous variables and only bound
constraints. GSS begins with an arbitrary initial point and iterates until stopped. Each iteration

15

generates a trial point along the positive and negative direction of each coordinate axis. The set
of search directions are centered on the current best point (called the “parent” point) and initially
extend a certain fixed distance. If one of these trial points improves on the parent, then it becomes
the new best point for the next round. If a trial point does worse, then the step size in that
direction is reduced to generate a replacement trial point. GSS ends when the step length becomes
sufficiently short in every direction emanating from the current best point. Details of this process
are explained in the references and in Section 4.7. In particular, parameter Step Tolerance (p 36)
determines the length of a “sufficiently short” step that stops the algorithm.

The HOPSPACK implementation of GSS is asynchronous in the sense that iterations do not
wait for all trial points in a direction set to be evaluated. The algorithm takes action on any
partial set of results and is therefore ideal for parallel architectures. Convergence properties are no
different for the asynchronous algorithm. An asynchronous implementation is especially tolerant of
applications whose run time varies based on the trial point. For example, if certain input regions
require much more computation time in the application, GSS will make progress in regions that
run fast while waiting for the slower points to evaluate.

GSS can respond to “oracle” inputs provided by another solver. If an evaluation result is better
than the current GSS best point, then GSS will adopt this as the new best point and begin searching
around it. The feature is controlled by parameter Ignore Other Points (p 38).

The addition of linear constraints requires the set of directions to conform with active con-
straints. GSS honors linear equality constraints at all times, and designates linear inequalities as
active if the parent point is within a distance Epsilon Max (p 37). Trial points are always feasible
with respect to linear constraints. To speed up the search, GSS can guess whether a nearby linear
inequality is active and “snap” a trial point to the bound; this feature is controlled by parameters
Snap To Boundary (p 38) and Snap Distance (p 38).

GSS-NLC. The basic GSS solver handles continuous variables with bounds and linear con-
straints, and was available in APPSPACK 5.0. GSS is extended in HOPSPACK to handle nonlinear
constraints in a citizen called GSS-NLC. The algorithm treats violations of nonlinear constraints
with a penalty term in the objective [2]. An outer loop of iterations sets the weight of the penalty
term and starts a basic GSS citizen to solve a version of the problem without nonlinear con-
straints. This continues until the subproblem returns a feasible point that also satisfies the Step
Tolerance (p 36). The inner loop of points generated by the subproblem solver behaves the same
as a basic GSS citizen except its initial point and stop criteria are set by the GSS-NLC outer solver.

Performance of GSS-NLC can be heavily influenced by the penalty term and its weight (the
weight is also referred to as the penalty parameter). Configuration parameters described in Sec-
tion 4.8 provide more information. The values of Final Step Tolerance (p 42), Nonlinear
Active Tolerance (p 27), and Penalty Parameter Increase (p 41) are particularly important.
In general the penalty parameter should be increased rapidly to force feasibility, but on some prob-
lems a slightly infeasible path will reach an active nonlinear inequality constraint faster; in this
case the penalty parameter should be increased slowly. The user is encouraged to experiment.

The HOPSPACK framework allows a GSS-NLC citizen to create and manage subproblems
as separate GSS citizens. This is shown schematically in Figure 1, where a GSS-NLC citizen
is connected with a citizen labelled GSS(ρk) (the penalty parameter of the subproblem is ρk).
Subproblems run like any other citizen, but when they finish their result is returned to the parent

16

citizen that created them. This idea is leveraged to extend GSS for problems with integer variables
and multiple start points.

Figure 4. Hierarchy of GSS algorithms, showing how compli-
cated problems are decomposed into simpler subproblems. Arrows
“A” and “B” are referenced in the text.

Figure 4 shows how a family of GSS algorithms can address a hierarchy of problem types.
Complicated problems at the top follow one or more arrows to reach the basic GSS building block
at the bottom. An arrow indicates that a problem is transformed into a sequence of simpler
subproblems. For example, path A shows that a multi-start problem with continuous variables and
linear constraints is solved by creating GSS subproblems, each with a different starting point. The
parent GSS-MS collects subproblem results and generates new start points until finished. Path
B shows that a problem with integer-valued variables and linear constraints is solved by creating
GSS subproblems, each treating integer variables as fixed to a specific integer value. The parent
GSS-MIP follows a branching tree or other combinatorial strategy to decide how to fix integer
variables in each subproblem. In the most complex case, a problem with multiple start points,
integer variables, and nonlinear constraints would cascade from GSS-MS to GSS-MIP to GSS-NLC
to GSS, creating subproblems of every type.

17

4 Config Parameters

Execution of HOPSPACK is controlled by a number of configuration parameters. The user provides
a text file containing parameters and passes the file name on the command line. HOPSPACK reads
the file, parses parameter values, and stores them for use during execution. Most parameters have
default values, but an input file is always required to define the optimization problem and how it
is evaluated.

As an example, consider solving

min (x1 − 10)2 + (x2 − 10)2 + (x3 − 10)2 + (x4 − 10)2

subject to
−x1 − x2 − x3 − x4 ≥ −10

−1 ≥ x1 − x2 + x3 − x4

2x1 + 2x3 − 7x4 = 3
10 ≥ xi ≥ −10 i = 1, . . . , 4

This problem is provided in the directory examples/2-linear-constraints, where there is more docu-
mentation. The input lines below are sufficient to define and solve the problem on HOPSPACK:

@ "Problem Definition"
"Number Unknowns" int 4 # Number of variables
"Upper Bounds" vector 4 10 10 10 10 # Variable upper bounds
"Lower Bounds" vector 4 -10 -10 -10 -10 # Variable lower bounds
"Initial X" vector 4 -1 1 -1 -1 # Initial point

@@
@ "Linear Constraints"
"Inequality Matrix" matrix 2 4 # 2 ineq, 4 variables
-1 -1 -1 -1
1 -1 1 -1

"Inequality Lower" vector 2 -10 DNE # Lower bounds on 2 ineqs
"Inequality Upper" vector 2 DNE -1 # Upper bounds on 2 ineqs
"Equality Matrix" matrix 1 4 # 1 equality, 4 variables
2.0 0 2.0 -0.7e+1
"Equality Bounds" vector 1 3 # Right-hand side of eqs

@@
@ "Evaluator" # Program computing the obj
"Executable Name" string "linear_constraints"

@@
@ "Mediator"
"Citizen Count" int 1 # One citizen to start

@@
@ "Citizen 1" # Citizen name
"Type" string "GSS" # Generalized Set Search

@@

As the example illustrates, parameters are organized into sublists that begin with the @ character
and a keyword name; for example, @ "Problem Definition". Sublists end with a line containing
@@. Sublists can appear in any order.

18

Within a sublist are one or more parameters, each on a separate line. Parameters can appear in
any order within a sublist. Parameter names are scoped within a sublist, so if the same parameter
name appears in two sublists, it is actually two separate parameters with separate values. Each line
begins with the parameter name (a case-sensitive string), the type of the parameter (int, double,
etc.), and then the value. The file can contain empty lines, leading whitespace, and comments
beginning with the # character.

• String, integer, and double precision parameters are specified as follows:

"String Parameter Name" string "string value"
"Integer Parameter Name" int integer_value
"Double Parameter Name" double double_value

The double precision value can be in floating point or scientific format. HOPSPACK also
accepts the string “DNE” for a double precision value, which indicates the value “does not
exist”. For instance, in the example above DNE is used to show the first inequality constraint
has no upper bound.

• Boolean values are specified as follows:

"Boolean Parameter Name" bool value

The value is the word “true” or “false”, without quotes, or one of the equivalent words
“TRUE”, “True”, “T” (similarly, for “false”).

• Vector parameters are specified with a length (N) and then double precision values, all on
one line:

"Vector Parameter Name" vector N double_1 ... double_N

• Matrix parameters are specified with a number of rows (M) and columns (N). Double precision
values for each row are given on consecutive lines:

"Matrix Parameter Name" matrix M N
double_1,1 ... double_1,N
double_2,1 ... double_2,N

...
double_M,1 ... double_M,N

• A special character vector parameter is used to specify variable types. It is a vector of
single-letter characters:

"Character Vector Parameter Name" charvec N char_1 ... char_N

The next section (4.1) describes the assumptions made when formulating an optimization prob-
lem. A quick reference guide to all the parameters is provided in Section 4.2. The remaining
sections describe each parameter in HOPSPACK, grouped by sublist.

19

4.1 Defining the Optimization Problem

Certain conventions are assumed when defining an optimization problem for HOPSPACK. The
main points are described below. Documentation of the configuration parameters should also be
consulted, especially the “Problem Definition” sublist (Section 4.3) and the “Linear Constraints”
sublist (Section 4.4).

• Variables appear in an arbitrary order determined by the user, but that order must be main-
tained when listing upper and lower bounds, variable types, scaling factors, and any initial
start point.

• If the objective cannot be evaluated at a point, then the application should return the string
“DNE” to indicate the value does not exist. Also return DNE for any nonlinear constraints that
cannot be evaluated at a point.

• Linear equalities and inequalities are separated using different parameters (see Section 4.4).
Constraints within each set appear in an arbitrary order determined by the user, but that
order must be maintained when listing the matrix coefficients and bounds. A single inequality
can have a lower and upper bound, or just one bound.

• Nonlinear equalities and inequalities are separated. Constraints within each set appear in an
arbitrary order determined by the user, but that order must be maintained when returning
evaluation values or defining values at an initial start point. Nonlinear equalities should be
defined to equal zero; i.e., a value of zero at x indicates the equality is satisfied:

cE(x) = 0.

Nonlinear inequalities should be defined as greater than zero:

cI(x) ≥ 0.

Hence, a negative value at x indicates that an inequality is violated, and a nonnegative value
indicates feasibility. A nonlinear inequality with an upper and lower bound should be written
as two inequalities; for example,

8 ≥ x2 + y2 ≥ 5 →
{

8− x2 − y2 ≥ 0
x2 + y2 − 5 ≥ 0

20

4.2 Quick Reference for Config Parameters

The tables below list all configuration parameters in alphabetical order, grouped by sublist.

Problem Definition sublist (Section 4.3)
Parameter Name Type Default Value
Display (p 28) int 0 (no display of problem definition)
Initial F (p 27) vector DNE (no initial values)
Initial Nonlinear Eqs (p 27) vector DNE (no initial values)
Initial Nonlinear Ineqs (p 27) vector DNE (no initial values)
Initial X (p 27) vector no initial point
Lower Bounds (p 24) vector no lower bounds (all equal DNE)
Nonlinear Active Tolerance (p 27) double 1.0e-7
Number Nonlinear Eqs (p 26) int 0
Number Nonlinear Ineqs (p 26) int 0
Number Objectives (p 25) int 1
Number Unknowns (p 24) int none (parameter is required)
Objective Percent Error (p 26) double DNE (no stop test based on percent error)
Objective Target (p 25) double DNE (no target)
Objective Type (p 25) string "Minimize"
Scaling (p 24) vector automatic scaling if possible
Upper Bounds (p 24) vector no upper bounds (all equal DNE)
Variable Types (p 25) charvec all variables continuous

Linear Constraints sublist (Section 4.4)
Parameter Name Type Default Value
Active Tolerance (p 29) double 1.0e-12
Display (p 30) int 0 (no display of constraints)
Equality Bounds (p 28) vector no equality constraints
Equality Matrix (p 28) matrix no equality constraints
Inequality Lower (p 28) vector no inequality constraints
Inequality Matrix (p 29) matrix no inequality constraints
Inequality Upper (p 29) vector no inequality constraints

Evaluator sublist (Section 4.5)
Parameter Name Type Default Value
Debug Eval Worker (p 31) bool false
Evaluator Type (p 30) string "System Call"
Executable Name (p 30) string "a.out"
File Precision (p 31) int 14
Input Prefix (p 30) string "input"
Output Prefix (p 31) string "output"
Save IO Files (p 31) bool false

Mediator sublist (Section 4.6)
Parameter Name Type Default Value

21

Cache Comparison Tolerance (p 33) double 2 * machine epsilon (≈ 4.4× 10−16)
Cache Enabled (p 33) bool true
Cache Input File (p 33) string no input file
Cache Output File (p 34) string no output file
Cache Output Precision (p 34) int 14
Citizen Count (p 32) int none (parameter is required)
Display (p 35) int 2
Maximum Evaluations (p 33) int -1 (unlimited)
Maximum Exchange Return (p 34) int 1000
Minimum Exchange Return (p 34) int 1
Number Processors (p 32) int none (parameter required with MPI)
Number Threads (p 32) int none (parameter required if multithreaded)
Precision (p 35) int 3
Reserved Citizen Workers (p 32) int 0
Solution File (p 35) string no solution file
Solution File Precision (p 35) int 14
Synchronous Evaluations (p 34) bool false

Citizen GSS sublist (Section 4.7)
Parameter Name Type Default Value
Add Projected Compass (p 38) bool false
Add Projected Normals (p 39) bool true
Citizen Priority (p 36) int 1 (highest priority)
Contraction Factor (p 36) double 0.5
Display (p 40) int 0 (no display of GSS operation)
Epsilon Max (p 37) double 2 * Step Tolerance
Ignore Other Points (p 38) bool false
Initial Step (p 37) double 1.0
Maximum Evaluations (p 39) int -1 (unlimited)
Maximum Queue Size (p 39) int 0
Minimum Step (p 37) double 2 * Step Tolerance
Penalty Function (p 39) string "L2 Squared"
Penalty Parameter (p 39) double 1.0
Penalty Smoothing Value (p 39) double 0.0
Snap Distance (p 38) double Step Tolerance / 2
Snap To Boundary (p 38) bool false
Step Tolerance (p 36) double 0.01
Sufficient Improvement Factor (p 37) double 0.01
Type (p 36) string "GSS"
Use Random Order (p 38) bool true

Citizen GSS-NLC sublist (Section 4.8)
Parameter Name Type Default Value
Display (p 43) int 0 (no display of GSS-NLC operation)
Display Subproblem (p 44) int 0 (no display of subproblem operation)
Final Step Tolerance (p 42) double 0.001
Ignore Other Points (p 43) bool false

22

Initial Step Tolerance (p 42) double 0.1
Maximum Evaluations (p 43) int -1 (unlimited)
Max Subproblem Evaluations (p 43) int -1 (unlimited)
Penalty Function (p 40) string "L2 Squared"
Penalty Parameter (p 41) double 1.0
Penalty Parameter Increase (p 41) double 2.0
Penalty Parameter Maximum (p 41) double 1.0e+8
Penalty Smoothing Value (p 42) double 0.0
Smoothing Value Decrease (p 42) double 0.5
Smoothing Value Minimum (p 42) double 1.0e-5
Step Tolerance Decrease (p 42) double 0.5
Type (p 40) string "GSS-NLC"

23

4.3 Problem Definition Sublist Parameters

This sublist defines the optimization objective, the variables, bounds on the variables, scaling
factors for each variable, a starting point for algorithms to use, and the number and type of nonlinear
constraints. The sublist has one required parameter: Number Unknowns. All other parameters have
default values that assume the problem is an unconstrained minimization of continuous variables.

Number Unknowns. Specifies the number of optimization variables in the problem, includ-
ing continuous and integer-valued unknowns. The parameter value must be a positive integer.

Type: int

Default: none (the parameter is required)

Example: "Number Unknowns" int 4

Lower Bounds. Specifies a lower bound for each variable. If a variable has no lower bound,
then use the value DNE in that position of the vector. It is possible, but not recommended, to define
a simple variable bound as an inequality in the “Linear Constraints” sublist. The number of values
supplied by the parameter must equal the number of unknowns.

Type: vector

Default: no lower bounds (all values equal DNE)

Upper Bounds. Specifies an upper bound for each variable. If a variable has no upper
bound, then use the value DNE in that position of the vector. It is possible, but not recommended,
to define a simple variable bound as an inequality in the “Linear Constraints” sublist. The number
of values supplied by the parameter must equal the number of unknowns.

Type: vector

Default: no upper bounds (all values equal DNE)

Scaling. Variables with widely different ranges can substantially slow the convergence of GSS
and other algorithms. Scaling allows algorithms to correct for the discrepancy, and is considered
essential for good performance.

The parameter states the expected range of each variable, in either absolute or relative terms. If
no parameter is specified, then a default value of one is used (i.e., all variables are scaled equally).
However, HOPSPACK insists that the problem define either scaling or upper and lower bounds on
each variable. This ensures citizens have some information about the range of variables for their
algorithm; for example, GSS chooses a default value for Initial Step (p 37) based on the scaling
or variable bounds.

The GSS algorithm makes many internal calculations in scaled coordinates, and its behavior can
change based on the scaling. For example, the Step Tolerance (p 36) determines when a local

24

solution is found. If scaling is increased for a problem, then the step tolerance may need to decrease
in order to reach a solution with the same accuracy.

If the user has no information about variable scaling but is confident of the upper and lower bounds,
then often a reasonable guess for scaling is the range of the variable:

scalei = ui − li

The number of values supplied by the parameter must equal the number of unknowns.

Type: vector

Default: automatic scaling if possible, else the parameter is required

Variable Types. Specifies the type of each variable with a vector of character values. Possible
character codes are C (or c) for real-valued continuous variables, I (or i) for integer-valued variables
that can be relaxed to continuous values, and O (or o) for ordinal variables that can only take integer
values. Variables of type I and O are both integral at the solution, but an application with type I
variables will accept continuous values; for example, mixed integer programming problems that can
be relaxed to a continuous linear programming problem have variables of type I. Type O, known
as ordinal or categorical variables, require integer values at all evaluations points. The number of
values supplied by the parameter must equal the number of unknowns.

Type: charvec

Default: all variables continuous

Example: "Variable Types" charvec 3 C C I

Number Objectives. Specifies the number of optimization objective functions. A value of
one indicates there is a single objective function. A value of zero means there is no objective and
the goal is to find a feasible point. A value greater than one indicates there are multiple objectives.

Type: int

Default: 1

Objective Type. Specifies the goal of the optimization, which must be one of the keywords
"Minimize" or "Maximize". The parameter is ignored if Number Objectives is zero.

Type: string

Default: "Minimize"

Objective Target. Specifies a satisfactory value for the objective function to reach. If
HOPSPACK finds a feasible point with an objective equal to or better than the target value, then
execution stops immediately. If the Objective Type parameter is "Minimize", then HOPSPACK
stops when the objective value is less than or equal to the target; if "Maximize", then it stops

25

when the objective is greater than or equal to the target. (Note: in APPSPACK this parameter
was called “Known Global Minimum”.)

In many problems the optimal value of the objective is not known. In this case, leave the parameter
undefined. HOPSPACK can still find a solution, but will probably take more iterations compared
to a known target, because it will make extra evaluations to confirm that neighboring points are
no better.

Use the parameter Objective Percent Error to instruct HOPSPACK to stop when within a
certain range of the target value.

Type: double

Default: DNE (no target)

Objective Percent Error. Specifies a desired value for the objective function to reach, in
terms of parameter Objective Target. Suppose the current objective value is f and the target
value is fT . If f reaches or exceeds the target, then HOPSPACK stops, as explained in the descrip-
tion of parameter Objective Target. If f does not reach the target but is within a percentage of
it as defined in the equation below, then HOPSPACK stops. Pseudocode for the combined stop
test follows:

If f reaches or exceeds Objective Target Then stop

If 100× |f − fT |
max{10−4, |fT |}

≤ Objective Percent Error Then stop

The parameter value cannot be negative.

Type: double

Default: DNE (no stop test based on percent error)

Example: "Objective Percent Error" double 2.5 (stop if within 2.5%)

Number Nonlinear Eqs. Specifies the number of nonlinear equality constraints in the prob-
lem. Nonlinear equalities are defined in the form c(x) = 0, so a value of zero indicates feasibility.

Type: int

Default: 0

Number Nonlinear Ineqs. Specifies the number of nonlinear inequality constraints in the
problem. Nonlinear inequalities are defined in the form c(x) ≥ 0, so a negative value indicates the
constraint is violated.

Type: int

Default: 0

26

Nonlinear Active Tolerance. Specifies the maximum violation beyond which a nonlinear
equality or inequality constraint is considered active. For example, if an equality constraint evalu-
ates to a value larger than the tolerance, then the point is interpreted to be infeasible. Note that
the nonlinear tolerance is defined and treated differently than the Active Tolerance parameter in
the “Linear Constraints” sublist (p 29).

Type: double

Default: 1.0e-7 (10−7)

Initial X. Initial point for optimization to begin at. If any variable violates its upper or lower
bound, then it is moved to the bound to become feasible. If the initial point violates linear con-
straints, then a least squares subproblem is automatically solved to project it onto the constraints,
providing a feasible initial point. If an initial point is not defined, then each citizen is at liberty
to define a default initial point. The number of values supplied by the parameter must equal the
number of unknowns.

Type: vector

Default: no initial point

Initial F. Provides known objective values at the initial point specified by parameter Initial
X. If no initial point is given, or if the point is moved by HOPSPACK to satisfy constraints, then this
parameter is ignored. If parameter Initial X is given and this parameter is not, then HOPSPACK
will evaluate the initial point before any other trial points.

Type: vector (initial objective values)

Default: values not known

Initial Nonlinear Eqs. Provides known values for all nonlinear equality constraints at the
initial point specified by parameter Initial X. Nonlinear equalities are defined in the form c(x) = 0,
so a value of zero indicates feasibility. If no initial point is given, or if the point is moved by
HOPSPACK to satisfy constraints, then this parameter is ignored. If the problem has nonlinear
equalities, parameter Initial X is given and this parameter is not, then HOPSPACK will evaluate
the initial point before any other trial points. The number of values supplied by the parameter
must equal the value of Number Nonlinear Eqs.

Type: vector (initial equality constraint values)

Default: values not known

Initial Nonlinear Ineqs. Provides known values for all nonlinear inequality constraints at
the initial point specified by parameter Initial X. Nonlinear inequalities are defined in the form
c(x) ≥ 0, so a negative value indicates the constraint is violated. If no initial point is given, or if
the point is moved by HOPSPACK to satisfy constraints, then this parameter is ignored. If the
problem has nonlinear inequalities, parameter Initial X is given and this parameter is not, then

27

HOPSPACK will evaluate the initial point before any other trial points. The number of values
supplied by the parameter must equal the value of Number Nonlinear Ineqs.

Type: vector (initial inequality constraint values)

Default: values not known

Display. Specifies whether to print the problem definition to the console. Printing of the
problem definition can happen at the start of HOPSPACK execution, and when the GSS citizen
initializes. Possible values are:

0 display nothing
1 display problem summary
2 display all details, including bounds and type of each variable

Type: int

Default: 0 (display nothing)

4.4 Linear Constraints Sublist Parameters

This sublist defines linear equality and inequality constraints in the problem, and a tolerance for
determining when a constraint is active. The sublist can be omitted if the problem has no linear
constraints. Simple bounds on a single variable should be defined in the “Problem Definition”
sublist (Section 4.3).

Equality Bounds. Provides the right-hand side for all linear equality constraints. The order
of values matches the order of the rows in Equality Matrix. See the example at the beginning of
Section 4.

Type: vector

Default: no equality constraints

Equality Matrix. Provides the left-hand side coefficients for all linear equality constraints.
The order of matrix rows matches the order of the values in Equality Bounds. The number of
matrix columns must equal the number of unknowns. Coefficients are listed in dense notation; that
is, a zero value must be given for any missing variable terms. See the example at the beginning of
Section 4.

Type: matrix

Default: no equality constraints

28

Inequality Lower. Provides the lower bound for all linear inequality constraints. The order
of values matches the order of the rows in Inequality Matrix. If an inequality has no lower
bound, then use the value DNE in that position of the vector. See the example at the beginning of
Section 4.

Type: vector

Default: no inequality constraints

Inequality Upper. Provides the upper bound for all linear inequality constraints. The order
of values matches the order of the rows in Inequality Matrix. If an inequality has no upper
bound, then use the value DNE in that position of the vector. See the example at the beginning of
Section 4.

Type: vector

Default: no inequality constraints

Inequality Matrix. Provides the coefficients for all linear inequality constraints. The order
of matrix rows matches the order of the values in Inequality Lower and Inequality Upper. The
number of matrix columns must equal the number of unknowns. Coefficients are listed in dense
notation; that is, a zero value must be given for any missing variable terms. See the example at
the beginning of Section 4.

Type: matrix

Default: no inequality constraints

Active Tolerance. Specifies the distance over which an equality or inequality boundary is
considered active. For example, a point located beyond the active tolerance of a linear equality con-
straint is interpreted to be infeasible. Several other HOPSPACK operations depend on the tolerance
value: the computation of a step length to the bounds (see HOPSPACK LinConstr::maxStep()), the
choice of a set of active constraints to “snap” onto (see HOPSPACK LinConstr::formSnapSystem()),
the threshold for declaring a constraint to be degenerate (see HOPSPACK Matrix::nullspace()),
the construction of normal and tangent cones for generating search directions in the GSS citizen (see
methods in HOPSPACK GssDirections), and the solution of a least squares subproblem to project
infeasible trial points onto the linear constraints (see methods in HOPSPACK SolveLinConstrProj).

In most cases the active tolerance is applied against a scaled distance to a constraint. Therefore,
if Scaling (p 24) is large for some variables, the active tolerance may need to increase beyond its
default value.

Note that the linear tolerance is defined and treated differently than the Nonlinear Active
Tolerance parameter in the “Problem Definition” sublist (p 27).

The problem in examples/2-linear-constraints illustrates the importance of this parameter. If the
tolerance is made smaller than the default, then some trial points computed by projection onto
the constraints are judged to be infeasible. As an example, try changing the tolerance to 4.0e-16

29

(exact results of this experiment depend on the machine architecture).

Type: double

Default: 1.0e-12 (10−12)

Display. Specifies whether to print the linear constraints to the console. Printing of the
problem definition can happen at the start of HOPSPACK execution, and when the GSS citizen
initializes. Possible values are:

0 display nothing
1 display linear constraints summary
2 display all details, including the constraint matrices

Type: int

Default: 0 (display nothing)

4.5 Evaluator Sublist Parameters

This sublist determines how functions are evaluated. Every optimization problem must provide a
way for HOPSPACK to compute its objective and nonlinear constraints. Read Section 5 for an
explanation of how HOPSPACK invokes an evaluation.

Evaluator Type. Specifies the evaluator type with a special string value. Possible values are
"System Call" and "AMPL Call".

Type: string

Default: "System Call"

Executable Name. Specifies the name of an executable program that HOPSPACK calls to
evaluate optimization problem data at a trial point. The program is passed certain command line
arguments and uses files to communicate inputs and outputs. See Section 5 for information on
writing the executable.

This parameter is used only if the Evaluator Type parameter is "System Call". Note the exe-
cutable name should be a full path if the user’s PATH environment variable does not include the
location of the executable.

Type: string

Default: "a.out"

Input Prefix. Specifies the prefix of file names that are used to pass input data to the
executable program defined by parameter Executable Name. The full file name has the form

30

input prefix.NNN TT, where NNN is a unique integer tag assigned to the trial point and TT is the
type of information requested.

This parameter is used only if the Evaluator Type parameter is "System Call".

Type: string

Default: "input"

File Precision. Specifies the number of digits after the decimal point for each floating point
number written to the file named with parameter Input Prefix.

This parameter is used only if the Evaluator Type parameter is "System Call".

Type: int

Default: 14

Output Prefix. Specifies the prefix of file names that are used to return output from the
executable program defined by parameter Executable Name. The full file name has the form
output prefix.NNN TT, where NNN is a unique integer tag assigned to the trial point and TT is the
type of information requested.

This parameter is used only if the Evaluator Type parameter is "System Call".

Type: string

Default: "output"

Save IO Files. If true, then the data files formed with parameters Input Prefix and Output
Prefix are saved. If false, then the files are deleted when no longer needed. Keep in mind that
two files will be created for every trial point that HOPSPACK evaluates.

This parameter is used only if the Evaluator Type parameter is "System Call".

Type: bool

Default: false

Debug Eval Worker. If true, then debugging messages are written during execution of the
HOPSPACK evaluator. On the MPI version of HOPSPACK, evaluations usually take place on
distributed machines, and this is where the debugging messages will appear.

Type: bool

Default: false

31

4.6 Mediator Sublist Parameters

This sublist controls operation of the HOPSPACK framework, including the number of citizens and
citizen workers, the Cache of evaluated trial points, the manner in which points are exchanged with
the Executor, and the maximum number of evaluations. The sublist has one required parameter:
Citizen Count.

Citizen Count. Specifies the number of citizens defined in the configuration parameters file.
The value must match the number of citizen sublists. Some citizens may dynamically create child
citizens during HOPSPACK execution, but these dynamic citizens are not part of the Citizen
Count.

Type: int

Default: none (the parameter is required)

Number Processors. Specifies the number of processors to be used with the MPI version of
HOPSPACK. One processor will be dedicated to the main loop that runs the Mediator and Citizens.
Additional processors will be allocated to match the value of Reserved Citizen Workers. The
remaining processors are used to evaluate trial points. There must be enough processors to support
at least one evaluation worker. The value should not exceed the number of processors passed to
MPI when HOPSPACK is invoked.

The parameter is ignored if the HOPSPACK executable does not use MPI.

Type: int

Default: none (the parameter is required with an MPI executable)

Number Threads. Specifies the number of threads to be started with the multithreaded
version of HOPSPACK. One thread will be dedicated to the main loop that runs the Mediator and
Citizens. Additional threads will be allocated to match the value of Reserved Citizen Workers.
The remaining threads are used to evaluate trial points. There must be enough threads to support
at least one evaluation worker.

If the number of threads exceeds the number of CPU cores, then some evaluation workers will do
much less work than others, and overall efficiency usually decreases.

The parameter is ignored if the HOPSPACK executable does not use multithreading.

Type: int

Default: none (the parameter is required with a multithreaded executable)

Reserved Citizen Workers. (This parameter is reserved for future use.)

Type: int

32

Default: 0

Maximum Evaluations. Specifies how many trial points should be evaluated before halting.
The limit applies to executed function evaluations and does not include trial points found in the
Cache. A negative value means there is no limit on the number of evaluations.

Type: int

Default: -1 (unlimited)

Cache Enabled. If true, then evaluated points are saved in the Cache and used to prevent
duplicate evaluation requests. If false, then the Cache is not even constructed.

Type: bool

Default: true

Cache Comparison Tolerance. Specifies how far apart two points must be for the Cache
to consider them distinct. The tolerance is measured as a scaled distance, and applies to each
component of a point. If the two points are vectors a and b, the scaling vector is s, and the
comparison tolerance is denoted by τ , then the Cache considers a and b to be distinct if

|ai − bi| > τsi for some i = 1, . . . , n

or, equivalently, ∥∥∥∥ai − bi

si

∥∥∥∥
∞

> τ.

Type: double

Default: 2 * machine epsilon (≈ 4.4× 10−16)

Cache Input File. Specifies the name of an input file containing evaluated points for the
current problem definition. The file is read when HOPSPACK starts and all points are loaded
into the Cache, using the current Cache Comparison Tolerance to determine when points are
distinct. The file format is text, and is identical to a file produced by setting Cache Output File
and running HOPSPACK. Users must be careful that the input file corresponds to the current
problem definition.

Note that the HOPSPACK file format is not compatible with the older APPSPACK cache file
format.

Type: string

Default: no input file

33

Cache Output File. Specifies the name of an output file to write all evaluated points. Points
and their evaluations are appended to the file; hence, users must be careful that any existing data
corresponds to the same problem definition. Only distinct points are written, based on the current
value of Cache Comparison Tolerance. The file format is text, and is identical to the format
expected for Cache Input File. The number of digits written for each floating point number is
determined by Cache Output File Precision.

Note that the HOPSPACK file format is not compatible with the older APPSPACK cache file
format.

Type: string

Default: no output file

Cache Output File Precision. Specifies the number of digits after the decimal point for
each floating point number written to Cache Output File.

Type: int

Default: 14

Synchronous Evaluations. Determines the primary behavior of a Conveyor iteration. If
true, then all trial points submitted by citizens are evaluated in a single Conveyor iteration. Thus,
from the point of view of a citizen, the list of trial points submitted is returned on the next call with
evaluation information, as though the citizen plus evaluations were happening in a single execution
path. If the parameter is false, then the number of points submitted and returned by a Con-
veyor iteration is governed by the parameters Maximum Exchange Return and Minimum Exchange
Return. From the point of view of a citizen, submitted trial points are returned asynchronously at
an unknown future iteration.

Type: bool

Default: false

Maximum Exchange Return. Specifies the maximum number of evaluated points returned
during a single iteration of the Conveyor. The actual number returned may be less, depending on
asynchronous behavior of the architecture. The value must be positive and no smaller than the
value of Minimum Exchange Return. The parameter is ignored if Synchronous Evaluations is
set true.

Type: int

Default: 1000

Minimum Exchange Return. Specifies the minimum number of trial points submitted for
evaluation during a single iteration of the Conveyor. The actual number submitted may be less if

34

citizens have not queued the minimum number at the start of a Conveyor iteraton. The value must
be positive. The parameter is ignored if Synchronous Evaluations is set true.

Type: int

Default: 1

Solution File. Provides the name of an output file to write the final solution. The point
and its evaluations are appended to the file; hence, users must be careful that any existing data
corresponds to the same problem definition. The number of digits written for each floating point
number is determined by Solution File Precision.

Type: string

Default: no solution file

Solution File Precision. Specifies the number of digits after the decimal point for each
floating point number written to Solution File.

Type: int

Default: 14

Precision. Specifies the number of digits after the decimal point when printing numbers
associated with vectors and matrices. For example, the parameter controls the format of evaluated
points printed during execution. The parameter may also control the output from some citizens.

Type: int

Default: 3

Display. Specifies how much information to print about operation of the HOPSPACK frame-
work. Citizens must provide their own Display parameter to print their internal operations.
Possible values are:

1 display the final solution
2 display the final solution and input parameters
3 display the above, and all evaluated points
4 display the above, and all trial points
5 display the above, and execution details

Type: int

Default: 2 (display final solution and input parameters)

35

4.7 Citizen GSS Sublist Parameters

This sublist determines operational specifics of a Generating Search Set algorithm. The citizen is
designed for problems with continuous variables, a single start point, and at most linear constraints
(no nonlinear constraints). Like all citizens, the Type parameter is required to identify the citizen.
See Section 3.3 for more information about the GSS algorithm.

Type. Specifies the citizen type with a special string value.

Type: string

Must be: "GSS"

Citizen Priority. Specifies the priority of submitted trial points. All citizens are assigned a
priority, and the Conveyor submits points from higher priority citizens before lower priority citizens.
The value must be between 1 and 10, with 1 being the highest priority.

Type: int

Default: 1

Step Tolerance. Determines the smallest steps that GSS will try before stopping. When a
trial point in a particular search direction fails to improve upon its parent point (see Sufficient
Improvement Factor), then the step length is decreased by the Contraction Factor. GSS con-
tinues to try shorter steps until they become smaller than the value of Step Tolerance. When
all search directions from the current “best point” have contracted to a length smaller than Step
Tolerance, then GSS identifies the point as a solution and stops.

Step length is measured as a scaled distance, based on the Scaling parameter in the “Problem
Definition” sublist (p 24). If si is the scaling factor for variable xi, then GSS stops searching along
xi when

|(step length)i| < si(Step Tolerance).

If scaling is unity in every direction, then Step Tolerance can be thought of as percent error over
a unit cube centered on the point identified as a solution.

Note that Step Tolerance should not be smaller than the Cache Comparison Tolerance pa-
rameter in the “Mediator” sublist (p 33); otherwise, small steps may be assigned the value of a
previously evaluated neighbor.

Type: double

Default: 0.01

Contraction Factor. Specifies the reduction in step length in a particular search direction
after a trail point is rejected. A point is rejected if the objective does not improve enough com-

36

pared with its parent (see Sufficient Improvement Factor for more details). The value must be
positive and less than one.

Type: double

Default: 0.5

Sufficient Improvement Factor. Determines the amount of improvement that the objective
of a trial point must make in comparison with its parent point in order to be accepted. The necessary
improvement ρ is computed as

ρ = α(step length)2

where α is the Sufficent Improvement Factor. Convergence of the GSS method is guaranteed
(with certain assumptions about the objective function) when α > 0. The value can also be set to
zero.

Type: double

Default: 0.01

Initial Step. Specifies the initial, scaled step length when generating a new trial point. Ide-
ally, the initial step covers the expected distance from start point to a solution. If unsure, it is best
to make the value too large rather than too small.

If no value is supplied and the Scaling parameter in the “Problem Definition” sublist (p 24) is
defined, then the default value of Initial Step is 1. If no value is supplied, Scaling is not
provided, and the default assignment of Scaling values equals one, then GSS computes a value
equal to half the maximum distance between upper and lower variable bounds.

Type: double

Default: 1.0

Minimum Step. Specifies the smallest size step that can be taken when generating a new
GSS trial point. The value must be greater than Step Tolerance.

Type: double

Default: 2 * Step Tolerance

Epsilon Max. Defines the maximum allowed radius about a point when determining whether
a linear constraint is active. The active set of constraints influences the generation of search
directions and new trial points.

Type: double

Default: 2 * Step Tolerance

37

Snap To Boundary. If true, then every newly generated point is “snapped” onto nearby
linear constraints. A constraint is considered “nearby” if its scaled range is less than or equal to Snap
Distance. Snapping can speed the discovery of a solution point at a corner of the feasible region,
and provides more accuracy when there is such a solution. Snapping requires that HOPSPACK be
configured with LAPACK (see Section 6.3).

Type: bool

Default: false

Snap Distance. Specifies the search radius for finding nearby linear constraints that a point
may “snap” onto. The radius is interpreted as a scaled distance. The parameter is ignored if Snap
To Boundary is set false. (Note: in APPSPACK this parameter was called “Bounds Tolerance”.)

Type: double

Default: Step Tolerance / 2

Use Random Order. If true, then trial points are submitted to the Conveyor in random
order. When evaluations are made asynchronously, random ordering reduces the tendency for initial
search directions to be overemphasized.

Type: bool

Default: true

Ignore Other Points. Specifies whether the GSS citizen ignores evaluated points that were
generated by other citizens. If false, then GSS will consider all evaluated points and center the
search around the best point found, regardless of how that point was generated. If true, then the
citizen determines a best point only from the set of candidates that it generated.

Type: bool

Default: false

Add Projected Compass. Specifies whether to include certain directions when generating
a pattern search. If true, then standard compass directions are added after being projected onto
the null space of the active linear constraints. Compass directions are vectors aligned with each
coordinate axis, both positive and negative:

{±e1,±e2, . . . ,±en}

Type: bool

Default: false

38

Add Projected Normals. Specifies whether to include certain directions when generating
a pattern search. If true, then generators for the normal cone are added after being projected onto
the null space of any linear equality constraints.

Type: bool

Default: true

Maximum Queue Size. Specifies the maximum number of points that remain “pending”
in a GSS citizen queue. The Conveyor asks a citizen for new trial points at the beginning of
each Conveyor iteration. If the number of previously submitted points still waiting for evaluation
exceeds Maximum Queue Size, then the GSS citizen will discard excess points, and then add any
newly generated trial points. Note that the number of points submitted by a GSS citizen can
exceed the parameter value.

Type: int

Default: 0

Maximum Evaluations. Specifies how many trial points should be evaluated before the GSS
citizen halts. The limit applies to executed function evaluations and does not include trial points
found in the Cache. The parameter limits evaluations by each instance of a GSS citizen, whether
created directly from the configuration file or called as a subproblem on behalf of another citizen.
A negative value means there is no limit on the number of evaluations.

Type: int

Default: -1 (unlimited)

Penalty Function. The parameter is typically used when the citizen is solving a subproblem
on behalf of another citizen. For more information, see the “Penalty Function” parameter in the
“Citizen GSS-NLC” sublist (p 40).

Type: string

Default: "L2 Squared"

Penalty Parameter. The parameter is typically used when the citizen is solving a subprob-
lem on behalf of another citizen. For more information, see the “Penalty Parameter” parameter in
the “Citizen GSS-NLC” sublist (p 41).

Type: double

Default: 1.0

Penalty Smoothing Value. The parameter is typically used when the citizen is solving a
subproblem on behalf of another citizen. For more information, see the “Penalty Smoothing Value”

39

parameter in the “Citizen GSS-NLC” sublist (p 42).

Type: double

Default: 0.0

Display. Specifies how much information to print about operation of the GSS citizen. Possible
values are:

0 display nothing
1 display the final solution and each new “best point”
2 display the above, and all generated trial points
3 display the above, and all search directions

Type: int

Default: 0 (display nothing)

4.8 Citizen GSS-NLC Sublist Parameters

This sublist determines operational specifics of a Generating Search Set algorithm for problems
with nonlinear constraints. The citizen is designed for problems with continuous variables, a single
start point, and any set of constraints. The algorithm solves a sequence of linearly constrained
subproblems using child instances of the GSS citizen (see Section 3.3 for more information about
the GSS-NLC algorithm). Most parameters from the “Citizen GSS” sublist (Section 4.7) can be
provided in the GSS-NLC sublist, and will be passed directly to the GSS child citizens. If a GSS
parameter is listed below as a GSS-NLC parameter, then it means GSS child citizens will receive a
modified version as explained below.

Type. Specifies the citizen type with a special string value.

Type: string

Must be: "GSS-NLC"

Penalty Function. Specifies the penalty function to use when computing a penalty term for
any nonlinear constraints. The penalty term equals the penalty function times the current penalty
parameter. The penalty term causes the objective function to become worse if constraints are
violated. For instance, if the Objective Type parameter is "Minimize", then a positive penalty
term is added to the objective, and this total value is minimized by GSS searching. If the parameter
is "Maximize", then a positive penalty term is subtracted.

Penalty functions are identified by a string name. The notation below defines a vector c(x) com-
posed from the nonlinear constraints defined in equation 1 (p 7). The vector includes all nonlinear

40

equality constraints cE(x) and all violated nonlinear inequalities from cI(x). Possible values for the
penalty function are:

"L2 Squared" ‖c(x)‖2
2

"L1" ‖c(x)‖1

"L1 (smoothed)" smoothed version of ‖c(x)‖1

"L2" ‖c(x)‖2

"L2 (smoothed)" smoothed version of ‖c(x)‖2

"L inf" ‖c(x)‖∞
"L inf (smoothed)" smoothed version of ‖c(x)‖∞

Smoothed versions are described fully in [2]. The degree of smoothing is determined by the Penalty
Smoothing Value.

Type: string

Default: "L2 Squared"

Penalty Parameter. Specifies the initial value of the penalty parameter. The penalty func-
tion is multiplied by the current penalty parameter to create a penalty term, which combines with
the objective value. The penalty parameter may be updated after solving a GSS subproblem, and
the new value is based on Penalty Parameter Increase. The value cannot be negative.

Type: double

Default: 1.0

Penalty Parameter Increase. Specifies the factor by which the penalty parameter is in-
creased. Increases happen if a GSS subproblem converges to a point that is sufficiently infeasible
with respect to the nonlinear constraints. See [2] for more information. The value must be greater
than one.

Type: double

Default: 2.0

Penalty Parameter Maximum. Specifies the maximum value that the penalty parameter
can achieve after multiplying by Penalty Parameter Increase. The maximum determines when
the GSS-NLC citizen will “give up” trying to reach feasibility: the citizen stops if the penalty
parameter is at its maximum, the current subproblem solution is infeasible, and the subproblem
solution is unchanged from the previous subproblem’s. The value cannot be less than the value of
Penalty Parameter.

Type: double

Default: 1.0e+8 (108)

41

Penalty Smoothing Value. Specifies the initial value of the smoothing parameter α used
in smoothed penalty functions. The smoothing parameter may be updated after solving a GSS
subproblem, and the new value is based on Smoothing Value Decrease. The value must satisfy
0 ≤ α ≤ 1. This parameter is ignored if Penalty Function is not smoothed.

Type: double

Default: 0.0

Smoothing Value Decrease. Specifies the factor by which the smoothing parameter is
decreased. Decreases happen if a GSS subproblem converges to a point that is sufficiently infeasible
with respect to the nonlinear constraints. The value must be positive and less than one. This
parameter is ignored if Penalty Function is not smoothed.

Type: double

Default: 0.5

Smoothing Value Minimum. Specifies the minimum value that the smoothing parame-
ter can achieve after multiplying by Smoothing Value Decrease. The value cannot be negative,
and for the "L1 (smoothed)" and "L inf (smoothed)" penalty functions cannot be zero. This
parameter is ignored if Penalty Function is not smoothed.

Type: double

Default: 1.0e-5 (10−5)

Final Step Tolerance. Determines the smallest steps that GSS subproblems will try before
stopping, and therefore has a strong influence on accuracy of the GSS-NLC solution. Each subprob-
lem is passed a current Step Tolerance (p 36) from the GSS-NLC parent citizen. The current
tolerance decreases according to Step Tolerance Decrease until the final tolerance is reached.
The value must be positive.

Type: double

Default: 0.001

Initial Step Tolerance. Specifies the initial step tolerance that is passed to the first GSS
subproblem as Step Tolerance (p 36). The value cannot be smaller than Final Step Tolerance.

Type: double

Default: 0.1

Step Tolerance Decrease. Specifies the factor by which the step tolerance is decreased
before starting a new GSS subproblem. The value cannot be negative or greater than one.

42

Type: double

Default: 0.5

Maximum Evaluations. Specifies how many trial points should be evaluated before the
GSS-NLC citizen halts. The limit applies to executed function evaluations and does not include
trial points found in the Cache. The parameter limits evaluations by each instance of a GSS-NLC
citizen, whether created directly from the configuration file or called as a subproblem on behalf of
another citizen. A negative value means there is no limit on the number of evaluations.

Type: int

Default: -1 (unlimited)

Max Subproblem Evaluations. Specifies the maximum number of trial points evaluated
by each GSS subproblem. The limit applies to executed function evaluations and does not include
trial points found in the Cache. The work done by a subproblem is primarily controlled by the step
tolerance, but this parameter provides a separate way to limit work. A negative value means there is
no limit on the number of evaluations. The value should not exceed Maximum Evaluations (p 43).

Type: int

Default: -1 (unlimited)

Ignore Other Points. Specifies whether GSS subproblems ignore evaluated points that were
generated by other citizens. If false, then subproblems will consider all evaluated points and center
the search around the best point found, regardless of how that point was generated. If true, then
the citizen determines a best point only from the set of candidates that it generated.

Type: bool

Default: false

Display. Specifies how much information to print about operation of the GSS-NLC citizen.
Possible values are:

0 display nothing
1 display the final solution and initial parameters
2 display the above, and interactions with subproblems

Type: int

Default: 0 (display nothing)

43

Display Subproblem. Specifies how much information to print about operation of the GSS
citizen subproblems. Possible values are:

0 display nothing
1 display the final solution and each new “best point”
2 display the above, and all generated trial points
3 display the above, and all search directions

Type: int

Default: 0 (display nothing)

44

5 Calling an Application

Every optimization application must provide a way for HOPSPACK to compute the objective
function and nonlinear constraint values at a given point. HOPSPACK provides a simple and
flexible method using system calls, described in Section 5.1. The user can also modify HOPSPACK
source code to evaluate points in some other manner, as discussed in Section 5.2.

5.1 Evaluation by System Call

The default mechanism in HOPSPACK is to call an external program for function evaluations.
Generally, the user writes a simple wrapper that calls the true application. Variable values are
passed in a short text file and function results are passed back in a separate text file. HOPSPACK
writes the variable values, makes a system call from C++ to execute the application, waits for it to
complete, and reads the output file. This simple mechanism provides maximum flexibility for the
application. It can be written in any language (Fortran, C, C++, Perl, MATLAB, etc.), consist
of multiple executables strung together (e.g., using a shell or .bat script), and reference external
data sources. The application itself can use MPI to run in parallel, although HOPSPACK will not
adjust its load balancing (you must figure how to allocate nodes between HOPSPACK and the
application copies). The same application wrapper will work with the MPI, multithreaded, and
serial versions of HOPSPACK.

Figure 5. HOPSPACK communication with an application.

Figure 5 shows the flow of data from HOPSPACK to an application. Specific variable values
at a trial point x are written to an input file, and the evaluated objective f(x) plus any nonlin-
ear constraints c(x) are returned via an output file. The figure shows multiple instances of the
application running in parallel. Each instance has its own input and output files, and must run
independent from other application instances. Figures 2 (MPI) and 3 (MT) show examples of how
the applications and HOPSPACK might be distributed across processors and threads. HOPSPACK
helps maintain independence of parallel application instances by defining a unique “tag number”
for each evaluation point. The tag is used to form unique input and output file names and is made
available to the application instance. Input and output file names are generated by HOPSPACK
as the concatenation of a string defined by parameter Input Prefix (p 30) or Output Prefix
(p 31), the tag number, and the evaluation type (discussed below). The unique tag number allows
all files to coexist in the same directory. If the application creates temporary files, it should use
the tag number to name the files so there is no conflict between parallel instances. Tag numbers
are generated from a counter that is reset whenever HOPSPACK starts; hence, tag numbers can

45

be reused when HOPSPACK restarts.

Input and output file information depends on the type of evaluation information desired, which
is one of the following:

F Evaluate the objective f(x) only (no constraints)
C Evaluate nonlinear constraints c(x) only (no objective)
FC Evaluate f(x) and nonlinear constraints c(x)

The default type is FC since the GSS solver requires all information at each trial point. However,
a different solver might separate processing of the objective and constraints; for example, a solver
may want to first find a completely feasible point before requesting the objective value.

The input file begins with two lines of header information and then the value of each variable.
The first line contains the evaluation type, and the second line gives the number of variables. This
is followed by variable values, one per line. The text below shows an example of an input file
generated by HOPSPACK for a problem with two variables:

FC
2
-1.50000000000000e+00
3.91875000000000e+00

The output file format is similar. Objective values are written first (assuming the evaluation
type is F or FC), and then any nonlinear constraints (for type C or FC). Constraints are written as
two vectors of values: one for equalities and one for inequalities. Objective values are also written
as a vector of values, allowing applications with multiple objectives. In all three cases the format
of a vector begins with a header line giving the number of items, and then a list of values, one per
line. If a function cannot be evaluated, the string “DNE” should be returned, indicating a value does
not exist at the trial point. The text below shows an example of an output file for type FC. There is
one objective (with f(x) = 5), no equality constraints, and two inequalities. Nonlinear inequalities
follow a “greater than zero” convention (Section 4.1), so this particular point is feasible with respect
to the first inequality and infeasible with respect to the second. Note that HOPSPACK expects the
number of objectives to match the value of configuration parameter Number Objectives (p 25),
and the number of constraints to match Number Nonlinear Eqs (p 26) and Number Nonlinear
Ineqs (p 26).

1
5.00000000000000e+00
0
2
1.25000000000000e+02
-2.08164062500000e+00

When the application wrapper is called to evaluate a particular trial point, it is given four
command line arguments: the input file name, output file name, tag number, and evaluation type.
The last argument is repeated on the first line of the input file. The application wrapper must read
a HOPSPACK input file and create a new output file before completing. The wrapper executable
itself should return zero if successful; any other value indicates to HOPSPACK that the evaluation

46

failed. An example written in C is provided in the file examples/1-var-bnds-only/var bnds only.c.
Examples written in C++ are provided in similar subdirectories, including a problem with nonlinear
constraints in examples/4-nonlinear-constraints/nonlinear constraints.cpp. The HOPSPACK source
code that calls the application is located in src/src-evaluator/HOPSPACK SystemCall.cpp.

The application wrapper can return a short error message that will be reported in HOPSPACK
output and passed to solvers. The point will be marked as unevaluated, causing it to be ignored
by most solvers. The error message can be a useful mechanism for reporting types of evaluation
failures, instead of simply failing. To send an error message the wrapper executable should return
zero (as though it succeeded), and the message should be on the first line of the output file instead
of the number of objectives. Everything after the message will be ignored. HOPSPACK will attach
the message to the point and notify all solvers that the point could not be evaluated.

5.2 Linking Evaluation Code

The default HOPSPACK mechanism described in Section 5.1 evaluates functions by calling the
application as a separate process. A user familiar with C++ can instead link HOPSPACK with
the application code and call it directly. This mechanism eliminates separate application processes
and file-based communications. Direct calls will therefore run faster, although the time savings
may be negligible compared to function evaluation times. Direct calls also allow run time control
of the application through customization of the “Evaluator” sublist of configuration parameters.

Calling the application directly requires modification of HOPSPACK source code, and linking
generally requires changing a CMake build file. There are different ways to accomplish this. One
option is provided in the directory examples/linked-evaluator-example. This example replaces the
HOPSPACK::EvaluatorDefault class with a custom ExampleLinkedEvaluator class. The new class
implements the interface HOPSPACK::Evaluator, which includes methods evalF() and evalFC()
for invoking the application. A one-line source code change is needed to construct an instance of the
new evaluator instead of EvaluatorDefault. More information is given in the file examples/linked-
evaluator-example/README linked evaluator.txt.

Another option is to define a new value for the parameter Evaluator Type (p 30) in addition to
the default value "System Call". The new value should be added to method newInstance() of the
HOPSPACK::EvaluatorDefault class, located in file src/src-evaluator/HOPSPACK EvaluatorDefault.
The custom evaluator must subclass HOPSPACK::EvaluatorDefault. An advantage of this ap-
proach is that the evaluator type can be altered at run time through the configuration file.

If the application depends on specific libraries, then their names must be given to CMake. See
Section 8.4 for details.

An application called directly has the potential to crash HOPSPACK. Be sure to surround
the call with try/catch handlers to trap any application errors. If an error is found, the custom
evaluator should return DNE values for the functions and a short error message that will be reported
in HOPSPACK output.

An application called directly from the multithreaded version of HOPSPACK must be thread
safe. HOPSPACK may call evalFC() simultaneously from many threads in the same shared mem-
ory space.

47

5.3 Evaluation Tips

For best results, applications should use full numerical precision when passing values. HOPSPACK
writes variable values to the input file with 15 significant digits, the maximum precision for double
precision on most 32-bit machines. The number of digits can be modified with the configuration
parameter File Precision (p 31). The application wrapper should write results to the output file
using the most precision possible.

An application with nonlinear constraints might benefit from careful ordering of calculations
in the application wrapper. For instance, if some constraints cannot be violated (sometimes called
“hard constraints”), then it may be best to check this first and not try to compute the objective
function at an infeasible point. In this case it is appropriate to return DNE for any unevaluated
functions. If the objective is well defined but expensive to compute, then it may be best to skip
evaluating at an infeasible point, returning DNE for the objective. This causes the constraint to
appear as an infinite barrier to solvers, because an objective value of DNE is treated as a value of
infinity (+∞ if minimizing, −∞ if maximizing). An infinite barrier is nonsmooth and could slow
convergence, but the overall time savings might be worthwhile.

Some solvers might not be capable of working with nonlinear constraints. In this case the
evaluation might choose to return DNE when a point is infeasible. However, this is not recommended
if using the default GSS solver in HOPSPACK. GSS computes a penalty for infeasible points and
can make use of the extent to which a point violates constraints. See Section 3.3 for more.

48

6 Building HOPSPACK

HOPSPACK is written with the intent of allowing user modifications and extensions. All code
is written in C++. HOPSPACK uses the CMake build system (http://cmake.org/) to support
compilation on multiple platforms, including Linux, Windows, and Mac OSX. This section describes
the process of installing source code, third party libraries, and building HOPSPACK executables.
Section 7 provides examples of modifying or extending the source code.

Several steps are required to build HOPSPACK. A quick outline is below, and full details for
various platforms follow.

6.1 Download and unpack HOPSPACK source code.
6.2 Download and install CMake toolset.
6.3 Obtain or build an LAPACK library (if linear constraints are used).
6.4 Build and test a “serial” (single processor) HOPSPACK executable.
6.6 Build and test an “mpi” (multiprocessor) HOPSPACK executable.
6.5 Build and test an “mt” (multithreaded) HOPSPACK executable.

6.1 Download HOPSPACK Source Code

Follow the links at

https://software.sandia.gov/trac/hopspack

to find the download page. Please register your email address with accurate and complete informa-
tion. We ask for this information as a courtesy in exchange for our free software. Having accurate
user data allows us to better ascertain in what way HOPSPACK is used, which may influence future
development. Your email address will remain strictly confidential and will not be used unless you
request to be on the HOPSPACK Users Mailing List. Remember the email address you register so
you can registration the next time.

Download the source code. For convenience, it is supplied in both Windows compressed file
form and Unix compressed tar file form. The contents are the same.

Save the compressed file to any directory and unzip it. You should see a directory structure
like the following:

hopspack-2.0-src
doc
examples
src
test

6.2 Download and Install CMake

CMake is a leading open-source build system that supports multiple operating systems. You need
to download a CMake binary distribution (typically, 5-10 Mbytes in size) appropriate for your

49

http://cmake.org/
https://software.sandia.gov/trac/hopspack

operating system and install it. If HOPSPACK will run on different machines, then install CMake
on each target machine. The installation creates a CMake tool that will be used to construct
platform-specific build scripts for compiling HOPSPACK source code.

Visit http://cmake.org/ and find a recent release of CMake for your target operating sys-
tem. The CMake release must be 2.6.2 or later. At the time this documentation was pro-
duced, the CMake distribution could be found by clicking on RESOURCES and then Download
to reach http://cmake.org/cmake/resources/software.html. Only the binary distribution is needed
(no CMake source code). For example, cmake-2.6.3-Linux-i386.tar.gz was the file name for an
x86 Linux machine, and cmake-2.6.3-win32-x86.exe the file name for an x86 Windows machine.

Installation of CMake is very simple, and explained on the CMake download page. For example,
on a Linux machine just unpack the file to any directory (this procedure does not require root
privileges). It should create a new subdirectory tree with a name like cmake-2.6.3-Linux-i386.
Just add the subdirectory cmake-2.6.3-Linux-i386/bin to PATH.

On Windows, run the CMake distribution file to start an installation wizard and follow the direc-
tions. By default, CMake will install at C:\\Program Files\CMake 2.6 and create a Start Menu
entry that invokes the CMake GUI interface. If you prefer to run the command line version of
CMake, then click a wizard button that adds CMake to PATH.

6.3 Build an LAPACK Library

A third party LAPACK (Linear Algebra PACKage) library is required for optimization problems
with general linear constraints. Simple variable bounds do not require LAPACK. If your problems
do not have general linear constraints, then skip the rest of this section, but add the command line
option -Dlapack:BOOL=false when building HOPSPACK. The option tells the build to modify
source code so that no calls to LAPACK are made; however, it also prevents HOPSPACK from
solving problems with linear constraints.

Your system may already have LAPACK installed. For instance, on some Linux distributions
LAPACK is available in the file /usr/lib/liblapack.a. In this case CMake should find it automatically
and no further effort is needed. Try building the serial executable as described in Section 6.4; the
CMake configuration will tell you clearly whether an LAPACK library was found.

If LAPACK was not found on your system, or you prefer a particular version, then the library
must be installed. LAPACK libraries are available from many sources. Perhaps the most common
version is from Netlib, freely available at http://netlib.sandia.gov/lapack. Other possibilities are
vendor-provided libraries like the Intel MKL or AMD ACML, and tunable versions such as ATLAS.

LAPACK functions called by HOPSPACK are the following:

ddot dgemv
dgelqf dgesvd
dgemm dgglse

Make sure the library contains these functions and their dependents, or there will be unresolved
symbols when linking the final HOPSPACK executable. CMake will test for the presence of these
functions when it configures HOPSPACK, and will halt with a warning message if it detects a
problem.

50

http://cmake.org/
http://cmake.org/cmake/resources/software.html
http://netlib.sandia.gov/lapack/

Linux example of building Netlib. This example shows a particular case of building a Netlib
version using the GNU compilers. Netlib produces two library files, one for BLAS functions such
as ddot and one for LAPACK functions such as dgglse. The Netlib libraries are created using a
Fortran compiler, so the HOPSPACK C++ executables must include a Fortran-to-C library (the
CMake build process will try to do this automatically). The example also shows how to edit the
HOPSPACK CMake configuration file to find the libraries if they are produced in a nonstandard
location. Please note this is just one possible example and your build procedure may differ.

- Download lapack-3.1.1.tgz from http://netlib.sandia.gov/lapack
- Unpack the distribution (this example assumes the directory /tmp is used)
- Consult README and INSTALL/lawn81.pdf for Netlib instructions.
- For a Linux RHEL 4 machine build a minimal LAPACK as follows:

> cp make.inc.example make.inc
Edit Makefile:

Change comments to enable building blaslib and lapacklib
Change “$(MAKE)” to “$(MAKE) double” to avoid unnecessary objects

> make lib (should produce files blas LINUX.a and lapack LINUX.a)
Netlib libraries must be renamed to conform with Linux convention:
> mv blas LINUX.a libblas LINUX.a
> mv lapack LINUX.a liblapack LINUX.a

- Either add these options to the CMake command line:
-DLAPACK LIBS="$LH/liblapack LINUX.a;$LH/libblas LINUX.a"
(where $LH is the LAPACK home /tmp/lapack-3.1.1)

- Or edit ConfigureLapack.cmake in the HOPSPACK directory:
Find the section beginning with the message “Linear constraints allowed”
Comment out option 1 and uncomment the lines for option 3
Change the path in option 3 to the location of your libraries
(Use option 2 if your libraries are in a standard location)

- If CMake has trouble finding the Fortran-to-C library, try adding:
-DLAPACK ADD LIBS="gfortran"

Windows example of using Netlib with MSVC. This example uses a precompiled Netlib
distribution made with the Microsoft Visual C++ compiler (MSVC). Netlib code is traditionally
written in Fortran, but it is often more convenient to use the free MSVC compiler on Windows.
Netlib provides a version of the source code that is translated to C, called CLAPACK. A single
precompiled library file includes BLAS and LAPACK functions. Symbol names are different, but
HOPSPACK works with CMake to recognize this and link correctly. The procedure follows:

- Download CLAPACK3-Windows.zip from http://netlib.sandia.gov/clapack
- Unzip the distribution in any directory; here, assume c:\temp is used
- Either add this option to the CMake command line:

-DLAPACK LIBS=c:\temp\CLAPACK3-Windows\CLAPACK\Release\clapack.lib
- Or edit ConfigureLapack.cmake in the HOPSPACK directory:

Find the section beginning with the message “Linear constraints allowed”
Comment out option 1 and uncomment the lines for option 4
Change the path in option 4 to the location of your libraries

51

http://netlib.sandia.gov/lapack/
http://netlib.sandia.gov/clapack/

Linux example of using Intel MKL. The Intel MKL contains routines for LAPACK and many
other math functions that are specially tuned for Intel microprocessors. You could use the MKL
builder tool to create a single library containing just the LAPACK routines needed by HOPSPACK.
In that case, pass the library to CMake using the command line option -DLAPACK LIBS. Another
technique is to provide all the appropriate MKL libraries to CMake and let the linker find what it
needs. Assuming $MKL LIB is the directory where MKL libraries are stored, the CMake command
line options are (for MKL version 9.0):

-DLAPACK LIBS="$MKL LIB/libmkl lapack.a;$MKL LIB/libmkl ia32.a"

-DLAPACK ADD LIBS=$MKL LIB/libguide.so

6.4 Build and Test the “serial” HOPSPACK Executable

The CMake tool constructs platform-specific build scripts for compiling and linking executables.
We recommend making an “out of source” build, instead of building the object and executable files
in the source directories. This is easy to do with CMake and allows the existence of multiple builds
without conflict; for instance, a serial and MPI build.

To create an out of source build, make a clean directory, change to it, and run CMake from
this directory. CMake allows the build directories to be anywhere, but in the remainder of this
section we assume a clean directory is created at the same level as hopspack-2.0-src. After building
all versions, the directory structure will look like the following:

hopspack-2.0-src
doc (provided)
examples (provided)
src (provided)
test (provided)

build serial (create this and build in it)
HOPSPACK main serial (built by CMake)
examples (built by CMake)

1-var-bnds-only (built by CMake)
... (built by CMake)

test (built by CMake)
build mpi (see Section 6.6)
build mt (see Section 6.5)

The examples below show how to run CMake on various platforms. For trouble-shooting or
customizing CMake, see Section 8. For information on linking with an LAPACK library, see
Section 6.3.

Linux (build serial HOPSPACK). Start at the HOPSPACK parent directory and run the
following commands:

> mkdir build serial
> cd build serial
> cmake ../hopspack-2.0-src

52

-- The CXX compiler identification is GNU
-- ...
-- Build files have been written to: ...
> make
> make test

The execution of cmake displays several lines of informational output, only a few of which are
shown above. Its behavior is roughly similar to a Unix “autoconf” or “config” tool. It produces
a subdirectory structure similar to that of hopspack-2.0-src, with Makefile files that work with
the chosen compiler. Running make in the last step produces the HOPSPACK executable, test
executables, and optimization evaluators in examples. Running make test invokes CTest (a CMake
utility) to run any automated tests that come with HOPSPACK. They should all pass.

Now change to the examples directory. There should be a number of subdirectories named 1-var-
bnds-only, 2-linear-constraints, etc., and a README.txt file. Each subdirectory contains HOPSPACK
configuration parameters and a small executable that evaluates optimization objectives and con-
straints at a given point. Run the first example:

> cd examples/1-var-bnds-only
> ../../HOPSPACK main serial example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt. Try 2-linear-
constraints if your configuration includes an LAPACK file for problems with linear constraints.

A common problem on Linux machines is failure of example evaluations because the current
directory is not in the PATH environment variable. An error message

ERROR: Call failed: ‘var bnds only ...’ <SystemCall>

means the Evaluator in HOPSPACK could not run the example executable. An easy fix is to add
the current directory to the PATH environment variable:

> export PATH=$PATH:.

Alternatively, edit example1 params.txt and change the parameter defining the executable to be

"Executable Name" string "./var bnds only"

Mac OSX (build serial HOPSPACK). This section assumes a recent version of XCode is
installed on the Mac, providing a g++ compiler and LAPACK libraries. For example, XCode 3.1.2
on Mac OSX 10.5.8 provides the files /usr/lib/libblas.dylib and /usr/lib/liblapack.dylib.

Open a Mac Terminal Window and follow the same procedure as the Linux build example
described immediately above. The only difference is that the additional LAPACK library name
must be passed to CMake during configuration. Do this with the option -DLAPACK ADD LIBS:

> mkdir build serial
> cd build serial
> cmake ../hopspack-2.0-src -DLAPACK ADD LIBS=/usr/lib/libblas.dylib
-- ...
> make (or gnumake)

53

This will build the executable program HOPSPACK main serial.

Now change to the examples directory. There should be a number of subdirectories named 1-var-
bnds-only, 2-linear-constraints, etc., and a README.txt file. Each subdirectory contains HOPSPACK
configuration parameters and a small executable that evaluates optimization objectives and con-
straints at a given point. Run the first example:

> cd examples/1-var-bnds-only
> ../../HOPSPACK main serial example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt.

A common problem is failure of example evaluations because the current directory is not in the
PATH environment variable. See the Linux build example above for more information.

Windows using Visual Studio (build serial HOPSPACK). CMake can generate a Microsoft
Visual Studio project for the HOPSPACK source code. At the time this documentation was
produced, CMake was unable to create Visual Studio project files from a free Visual Studio Express
Edition (there is a known bug in locating the compiler). Hence, this section assumes a full Visual
Studio product is installed (for example, Microsoft Visual Studio 2008 with the version 9.0 C++
compiler). A subsequent example describes how CMake can produce a set of Makefile files that
work with the command line nmake tool in the Express Edition.

CMake can execute in a GUI or from the command line. This example uses a Windows DOS-like
command line console such as the one below.

First, make sure environment variables are configured for the Microsoft compiler. If installed
in its default location, this is accomplished (for version 9.0) by running:

> c:\Program Files\Microsoft Visual Studio 9.0\VC\vcvarsall.bat

Start at the directory where the HOPSPACK parent directory exists and run the following
commands:

> mkdir build serial
> cd build serial
> cmake -G "Visual Studio 9 2008" ..\hopspack-2.0-src
-- Check for working CXX compiler: C:\Program Files ...
-- ...
-- Build files have been written to: ...

54

The execution of cmake displays several lines of informational output, only a few of which are
shown above. It produces a subdirectory structure similar to that of hopspack-2.0-src, and a file
ALL BUILDS.vcproj with the main Visual Studio project.

Start Visual Studio and open the file ALL BUILDS.vcproj. It contains projects for all the libraries
and executables built by HOPSPACK. If you build ALL BUILDS then Visual Studio will compile
and link everything, including the serial HOPSPACK executable, examples, and tests. A successful
build is shown in the screen shot below.

You must return to a command line console to run HOPSPACK. The main executable should
be in the src directory: build serial\src\HOPSPACK main serial.exe.

Now change to the examples directory. There should be a number of subdirectories named 1-var-
bnds-only, 2-linear-constraints, etc., and a README.txt file. Each subdirectory contains HOPSPACK
configuration parameters and a small executable that evaluates optimization objectives and con-
straints at a given point. You may have to edit the parameters file in each example and tell it
where the optimization executable is located. Run the first example:

> cd examples\1-bnd-vars-only
Edit example1 params.txt and change the “Executable Name” parameter to be

"Executable Name" string "Debug\var bnds only.exe"
> ..\..\HOPSPACK main serial.exe example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt. Try 2-linear-
constraints if your configuration includes an LAPACK file for problems with linear constraints.

Windows using NMake (build serial HOPSPACK). CMake can generate a set of Makefile
files that work with the Visual Studio command line nmake tool. The nmake facility is provided

55

with the full Microsoft Visual Studio product or the free Visual Studio Express Edition (available
from Microsoft).

This section assumes Visual C++ 2005 Express Edition with the version 8.0 compiler is installed.
All commands are run from a Windows DOS-like command line console such as the one below.

First, make sure environment variables are configured for the Microsoft compiler. If installed
in its default location, this is accomplished (for version 8.0) by running:

> c:\Program Files\Microsoft Visual Studio 8\Common7\Tools\vsvars32.bat
> c:\Program Files\Microsoft Platform SDK...\SetEnv.cmd

Start at the directory where the HOPSPACK parent directory exists and run the following
commands:

> mkdir build serial
> cd build serial
> cmake -G "NMake Makefiles" ..\hopspack-2.0-src
-- The CXX compiler identification is MSVC
-- ...
-- Build files have been written to: ...
> nmake

The execution of cmake displays several lines of informational output, only a few of which
are shown above. It produces a subdirectory structure similar to that of hopspack-2.0-src, with
Makefile files that work with the chosen compiler. Running nmake in the last step produces the
HOPSPACK executable, test executables, and optimization evaluators in examples.

Now change to the examples directory. There should be a number of subdirectories named 1-var-
bnds-only, 2-linear-constraints, etc., and a README.txt file. Each subdirectory contains HOPSPACK
configuration parameters and a small executable that evaluates optimization objectives and con-
straints at a given point. Run the first example:

> cd examples\1-bnd-vars-only
> ..\..\HOPSPACK main serial.exe example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt. Try 2-linear-
constraints if your configuration includes an LAPACK file for problems with linear constraints.

56

6.5 Build and Test an “mt” HOPSPACK Executable

This section assumes you are making an “out of source” multithreaded build in a separate directory
from the serial build of Section 6.4. After building, the directory structure will look like the
following:

hopspack-2.0-src
doc (provided)
examples (provided)
src (provided)
test (provided)

build serial (see Section 6.4)
build mt (create this and build in it)

HOPSPACK main threaded (built by CMake)
examples (built by CMake)

1-var-bnds-only (built by CMake)
2-linear-constraints (built by CMake)

test (built by CMake)

The build procedure is almost identical to that of Section 6.4. An extra option is passed
to CMake that instructs it to find multithreading libraries and compile additional thread-based
source files. You can create separate serial and MPI versions of HOPSPACK if for some reason
multithreading libraries are not available on your machine.

All the examples in Section 6.4 begin with three instructions: create a new directory, change
to it, and run CMake. To build the multithreaded version, similar instructions are typed in at the
command line, but with the option -Dmt=yes:

> mkdir build mt
> cd build mt
> cmake ../hopspack-2.0-src -Dmt=yes

From this point, the build procedure is identical to Section 6.4. Note that CMake accepts any
of the option values -Dmt=yes, -Dmt=true, or -Dmt=on.

Assuming the build completed successfully, change to the examples directory. There should
be a number of subdirectories named 1-var-bnds-only, 2-linear-constraints, etc., and a README.txt
file. Each subdirectory contains HOPSPACK configuration parameters and a small executable that
evaluates optimization objectives and constraints at a given point. Run the first example:

> cd examples/1-var-bnds-only
> ../../HOPSPACK main threaded example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt. The Number
Threads parameter in the “Mediator” sublist (p 32) determines how many threads are created.
Try increasing the number of threads and observe that more “Eval workers” are used.

If the Display parameter in the “Mediator” sublist (p 35) is 3 or larger, then a timing report
for each evaluation worker will be printed after HOPSPACK completes. The value displayed is

57

the cumulative wall clock time that the Executor believes a worker is busy. This should be nearly
the same as the time consumed by evaluations on a worker, assuming the machine has sufficient
processors to handle each worker thread. However, if workers do not have available processors
when they are assigned work by the Executor, then the displayed time will be longer than actual
evaluation time.

Source files used in the multithreaded version are identical to those used in the serial version
except for the main routine (HOPSPACK main threaded.cpp versus HOPSPACK main serial.cpp),
and the executor (HOPSPACK ExecutorMultiThreaded.cpp versus HOPSPACK ExecutorSerial.cpp).
In addition, the “shared” library includes classes that wrap native threading functions (src/src-
shared/HOPSPACK Thread*).

6.6 Build and Test an “mpi” HOPSPACK Executable

This section assumes you have read about building a serial executable in Section 6.4. Differences
for building with MPI are discussed here, but refer to Section 6.4 for more details about building
with CMake.

This section assumes you are making an “out of source” MPI build in a separate directory from
the serial build of Section 6.4. After building, the directory structure will look like the following:

hopspack-2.0-src
doc (provided)
examples (provided)
src (provided)
test (provided)

build serial (see Section 6.4)
build mpi (create this and build in it)

HOPSPACK main mpi (built by CMake)
examples (built by CMake)

1-var-bnds-only (built by CMake)
2-linear-constraints (built by CMake)

test (built by CMake)

The build procedure is almost identical to that of Section 6.4. An extra option is passed to
CMake that instructs it to find MPI libraries and compile with an MPI-aware compiler. You can
create separate serial and multithreaded versions of HOPSPACK if for some reason MPI fails to
build on your machine.

All the examples in Section 6.4 begin with three instructions: create a new directory, change to
it, and run CMake. To build the MPI version, similar instructions are typed in at the command
line, but with the option -Dmpi=yes:

> mkdir build mpi
> cd build mpi
> cmake ../hopspack-2.0-src -Dmpi=yes

If CMake has trouble finding your MPI-aware compiler, try specifying it as a command line pa-
rameter; for example:

58

> cmake ../hopspack-2.0-src -Dmpi=yes -DMPI COMPILER=/tmp/mpich-1.2.7p1/bin/mpicxx

If this fails, consider modifying ConfigureMPI.cmake. This file contains some comments about the
procedure CMake uses to find and configure MPI.

From this point, the build procedure is identical to Section 6.4. Note that CMake accepts any
of the option values -Dmpi=yes, -Dmpi=true, or -Dmpi=on.

Assuming the build completed successfully, change to the examples directory. There should
be a number of subdirectories named 1-var-bnds-only, 2-linear-constraints, etc., and a README.txt
file. Each subdirectory contains HOPSPACK configuration parameters and a small executable that
evaluates optimization objectives and constraints at a given point. Run the first example:

> cd examples/1-var-bnds-only
> mpirun -np 2 ../../HOPSPACK main mpi example1 params.txt

As explained in the README.txt file, this solves a simple two-dimensional minimization problem
with bound constraints. Check the solution against the value listed in README.txt. The Number
Processors parameter in the “Mediator” sublist (p 32) determines how many processors are used.
Try increasing the number (along with the argument for -np) and observe that more “Eval workers”
are used.

If the Display parameter in the “Mediator” sublist (p 35) is 3 or larger, then a timing report
for each evaluation worker will be printed after HOPSPACK completes. The value displayed is the
cumulative wall clock time that the Executor believes a worker is busy. Time is measured by the
Executor on the main MPI node, not the worker. The Executor measures from the moment an
MPI message is sent to a worker to the moment an MPI reply is received.

Source files used in the MPI version are identical to those used in the serial version except for
the main routine (HOPSPACK main mpi.cpp versus HOPSPACK main serial.cpp), and the executor
(HOPSPACK ExecutorMpi.cpp versus HOPSPACK ExecutorSerial.cpp). In addition, the “shared”
library includes a class that wraps MPI functions (src/src-shared/HOPSPACK GenProcComm).

59

7 Extending HOPSPACK

The HOPSPACK framework is written with the intention that users will extend it to suit their own
needs. Software is written in C++ and follows object oriented design practices. The code compiles
on major platforms using the CMake build tool (see Section 8).

Comments throughout the code conform to Doxygen standards (http://www.doxygen.org/) for
automated source code documentation. HTML documentation pages generated from Doxygen are
provided with the source code distribution. Open the file src/doc doxygen/html/index.html in a
browser to get started and use this documentation to learn how the software is layed out. New
documentation can be generated for modified code if you install the Doxygen tool on your machine
and run it using the configuration file src/Doxyfile.txt.

A common extension is to call an application directly from the HOPSPACK evaluator, rather
than start it as a separate process for every trial point. This extension is described in Section 5.2.

HOPSPACK can be embedded as a callable library, provided the parent application is careful
in devoting the proper number of parallel resources to HOPSPACK. User code needs to con-
struct an instance of the Executor and Hopspack classes, and form a ParameterList of configu-
ration parameters. Then the code simply calls the method Hopspack::solve(). Refer to src/src-
main/HOPSPACK main serial.cpp and src/src-main/HOPSPACK main threaded.cpp for examples.

7.1 Writing a New Citizen

Users are encouraged to write their own citizen code to test out new algorithm ideas or to create
hybrid solution methods. The HOPSPACK 2.0 release provides only three citizens (GSS, GSS-
NLC, GSS-MS), and the multi-start citizen is just a placeholder for more sophisticated algorithms.
New citizens can be added to the source code alongside the existing citizens. Applications can
enable or disable citizens in any combination through the configuration file.

A new citizen must implement a subclass of Citizen, which is declared in the file src/src-
citizens/HOPSPACK Citizen.hpp. It is best to create a new subdirectory under src/src-citizens for
each new citizen. A new citizen should define a unique string as the value of the Type parameter in
sublist “Citizen”; for example, the GSS citizen uses the value "GSS" (p 36). Then code should be
added to the Citizen::newInstance() method of src/src-citizens/HOPSPACK Citizen.cpp, using
the string identifier. This code should recognize the citizen type and construct an instance of the
subclass.

A citizen must implement all of the virtual void methods in Citizen. Most of these are fairly
simple and can be written by looking at the GSS and GSS-NLC citizens as examples. The heart of
a citizen’s activity is the method exchange(). This is called once per iteration by the Mediator. As
described in Section 3.1, the citizen receives a list of newly evaluated trial points and is expected
to return a new list of candidate points. In effect, the method exchanges new trial points for old
ones. The citizen receives points from all other citizens, but is supplied with a corresponding list
of “owner tags” so it can identify its own points. Beyond these simple requirements, a citizen is
free to pursue any algorithmic method for processing old points and generating new ones. The
Mediator will call getState() to learn if the citizen is finished.

60

http://www.doxygen.org/

A citizen can define its own configuration parameters to get runtime information from the user.
A citizen can call subproblem solvers or be called as a subproblem (see src/src-citizens/citizen-gss-nlc
for an example).

Notes in this section are admittedly brief and will be expanded in the future. Our hope is to
see more citizens added to the base source code of HOPSPACK as the project evolves.

61

8 More About CMake

Documentation for CMake is part of the CMake installation (Section 6.2), and can be found on
the CMake web site (http://cmake.org/). Files in the HOPSPACK source distribution named
CMakeLists.txt or files that end with the suffix .cmake were written for HOPSPACK. Any of these
CMake files can be examined and potentially edited to alter CMake behavior. The remainder of
this section describes specific situations where you might want to alter behavior when building
HOPSPACK.

8.1 Debugging the Build Process

Sometimes it helps to see more makefile output during compilation. On makefile systems detailed
output is enabled by editing ConfigureBuildType.cmake and uncommenting the line

SET (CMAKE VERBOSE MAKEFILE ON)

Then you should call cmake in a clean “out of source” directory to rebuild the HOPSPACK make-
files.

8.2 Building a Debug Version of the Code

To compile a HOPSPACK executable with debugging symbols, use the command line option
-Ddebug:BOOL=true. For example, on a Linux machine start in a clean “out of source” direc-
tory and call:

> cmake ../hopspack-2.0 -Ddebug:BOOL=true

Then, of course, all files must be recompiled.

8.3 Specifying a Different Compiler

Early in its configuration process, CMake chooses a C++ compiler to use. The command line
version usually prints messages about its choice; for example, here is some of the output from the
build of a serial HOPSPACK executable on Linux:

-- The CXX compiler identification is GNU
-- The C compiler identification is GNU
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
...

You can force CMake to use a different compiler by altering the environment variables CXX and
CC. In addition, you can add compiler flags by setting CXXFLAGS and tell the linker to include certain
libraries by setting CMAKE EXE LINKER FLAGS. As an example, suppose the Intel C++ compiler
(version 8.1) is installed on a Linux machine. Assume the bin directory containing the compiler

62

http://cmake.org/

icc is in PATH, and that the libraries directory is placed in LD LIBRARY PATH. Then you instruct
CMake to build a makefile system as follows:

> mkdir build serial
> cd build serial
> export CXX=icc
> export CC=icc
> export CXXFLAGS=-cxxlib-icc
> cmake ../hopspack-2.0 \

-DCMAKE EXE LINKER FLAGS="-lcprts -lcxa -lunwind"
-- The CXX compiler identification is Intel
-- The C compiler identification is Intel
...

8.4 Adding Libraries to an Executable

If source code modifications introduce dependencies on external libraries, then CMake must be
given the library names so they can be linked with the executables.

A simple way is to add the library name explicitly in the CMake configuration file that generates
an executable. For example, suppose the serial version of HOPSPACK on a Linux machine needs
to link with the dl system library (perhaps the function dlopen() was called in a custom evaluator
such as the one described in Section 5.2). A simple fix is to edit src/src-main/CMakeLists.txt and
add -ldl in the list of TARGET LINK LIBRARIES at the bottom of the file. Assuming the library is
in the system’s load path, CMake will find it the next time the executable is built.

The simple fix described above is hard-coded for Linux. If the library exists on all platforms,
then CMake has a better way. For example, suppose you want to link a personal library of utility
functions named “myutils”. On Linux this would typically be named libmyutils.a or libmyutils.so,
while Windows would typically name it myutils.dll. CMake provides a utility that finds the platform-
specific name:

FIND LIBRARY (MY UTILS VAR NAMES myutils DOC "find myutils")

This stores the platform-specific name in the CMake variable named MY UTILS VAR. Add the variable
to the list of TARGET LINK LIBRARIES instead of a hard-coded name.

For more examples, look at ConfigureLapack.cmake and ConfigureSysLibs.cmake in the top direc-
tory of the HOPSPACK distribution.

63

References

[1] G. A. Gray and T. G. Kolda, Algorithm 856: APPSPACK 4.0: Asynchronous parallel
pattern search for derivative-free optimization, ACM Transactions on Mathematical Software,
32 (2006), pp. 485–507.

[2] J. D. Griffin and T. G. Kolda, Nonlinearly-constrained optimization using asynchronous
parallel generating set search, Tech. Rep. SAND2007-3257, Sandia National Laboratories, Al-
buquerque, NM and Livermore, CA, May 2007. To appear in Applied Mathematics Research
eXpress.

[3] J. D. Griffin, T. G. Kolda, and R. M. Lewis, Asynchronous parallel generating set
search for linearly-constrained optimization, SIAM Journal on Scientific Computing, 30 (2008),
pp. 1892–1924.

[4] T. G. Kolda, Revisiting asynchronous parallel pattern search for nonlinear optimization, SIAM
Journal on Optimization, 16 (2005), pp. 563–586.

[5] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspec-
tives on some classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.

[6] , Stationarity results for generating set search for linearly constrained optimization, SIAM
Journal on Optimization, 17 (2006), pp. 943–968.

64

	Front Page
	Title & Abstract
	Acknowledgments
	Contents
	Figures
	1 Introduction
	1.1 Project History
	1.2 Citing HOPSPACK

	2 Quick Start
	3 Theory of Operation
	3.1 Software Architecture
	3.2 Stopping Tests
	3.3 GSS Overview

	4 Config Parameters
	4.1 Defining the Optimization Problem
	4.2 Quick Reference for Config Parameters
	4.3 Problem Definition Sublist Parameters
	4.4 Linear Constraints Sublist Parameters
	4.5 Evaluator Sublist Parameters
	4.6 Mediator Sublist Parameters
	4.7 Citizen GSS Sublist Parameters
	4.8 Citizen GSS-NLC Sublist Parameters

	5 Calling an Application
	5.1 Evaluation by System Call
	5.2 Linking Evaluation Code
	5.3 Evaluation Tips

	6 Building HOPSPACK
	6.1 Download HOPSPACK Source Code
	6.2 Download and Install CMake
	6.3 Build an LAPACK Library
	6.4 Build and Test the ``serial'' HOPSPACK Executable
	6.5 Build and Test an ``mt'' HOPSPACK Executable
	6.6 Build and Test an ``mpi'' HOPSPACK Executable

	7 Extending HOPSPACK
	7.1 Writing a New Citizen

	8 More About CMake
	8.1 Debugging the Build Process
	8.2 Building a Debug Version of the Code
	8.3 Specifying a Different Compiler
	8.4 Adding Libraries to an Executable

	References

